
CROISSANT: 
Centralized Relational Interface for 
Web-scale SPARQL Endpoints 

Takahiro Komamizu, Toshiyuki Amagasa, 
Hiroyuki Kitagawa

University of Tsukuba
Japan 



Linked Data (LD)

• Open data paradigm
• Linking facts in open data
• RDF (Resource Description Framework)
• e.g., 

Linked Open Data cloud
diagram (2014-08)

iiwas:iiwas2017
iiWAS 2017dc:title

dbr:Salzburgdbo:location dbr:Austria
dbo:country

Subject Predicate Object
iiwas:iiwas2017 dc:title “iiWAS2017” 
iiwas:iiwas2017 dbo:location dbr:Salzburg
dbr:Salzburg dbo:country dbr:Austria



Search over LD

• Finding facts in LD data
• Standardized method: SPARQL query
• Graph pattern-based requirement representation
• Bindings to variables in patterns are results.

iiwas:iiwas2017 ?x
dbo:location x

dbr:Salzburg
Graph pattern query Results

iiwas:iiwas2017
iiWAS 2017dc:title

dbr:Salzburgdbo:location dbr:Austria
dbo:country



Motivation

• LD is 
heterogeneous, complicated, and distributed.
• Large number of facts 
• Large number of classes (types of entities)
• Complicated multi-graph structure
• Distributed and self-managed data servers

• Users are demanded to describe
search intents by SPARQL.
• Graph patterns
è require understanding of the structure of data
• Multiple queries for distributed data
è require integration of multiple results



Our Objective and Approach

• Objective
• Queriable interface for popular query languages 
for distributed RDF data

• Approach: CROISSANT
• Centralized interface
è unified access interface for distributed data
• Relational view-based interface
è reducing effort for understanding data
• Query rewriting from SQL to SPARQL
• Query optimization



CROISSANT: an overview

SPARQL
Endpoint

RDF
Store

CROISSANT

View DB
SPARQL
Endpoint

RDF
Store

...

User

View Designer

Popularize (part of) 
data in SPARQL 
endpoints

Find necessary 
information from 
pre-defined views

Users’ point-of-view, 
SPARQL endpoints are invisible.



CROISSANT: view definition

• name: view name
• e.g., movie

• schema: relational schema of the view
• e.g., (movie_id, title, budget)

• endpoint_url: location of SPARQL endpoint
• e.g., http://dbpedia.org/sparql

• SPARQL_query: SELECT query of data in the view
• e.g., SELECT    ?movie_id ?title ?budget

WHERE { ?movie_id rdf:type dbo:Film. 
?movie_id dc:title ?title. 
?movie_id dbo:budget ?budget. }

iiWAS ’17, December 4–6, 2017, Salzburg, Austria Takahiro Komamizu, Toshiyuki Amagasa, Hiroyuki Kitagawa

SPARQL
Endpoint

RDF
Store

CROISSANT

View DB
SPARQL
Endpoint

RDF
Store

...

User

View Designer

Figure 1: Overview of CROISSANT.

that of original view queries, and succeeds to reduce query execu-
tion costs. Additionally, the combination of selection push-down
and view query merge optimizations achieves the best performance
if users’ queries span among several views with �ltering conditions.

Contributions of this paper are summarized as follows:
• CROISSANT: This paper proposes a centralized relational in-
terface for Web-scale SPARQL endpoints, which manages pre-
de�ned views and realizes user-friendly interfaces.
• Optimizations: This paper proposes four optimization tech-
niques, namely, view materialization, selection push-down, pro-
jection push-down and view query merge.
• Experimentation: CROISSANT and the optimizations are ex-
amined on a real-world largest SPARQL endpoint, DBpedia, and
shows applicability of CROISSANT as well as e�ectiveness of
the optimization techniques.

2 CROISSANT: PROPOSED METHOD
CROISSANT is a centralized view management system for SPARQL
endpoints, which provides relational interfaces based on pre-de�ned
views on SPARQL endpoints. Figure 1 gives an overview of CROIS-
SANT. CROISSANT involves two actors, viewdesigners andusers.
The former de�ne views on SPARQL endpoints and store views on
CROISSANT, and the latter ask queries (i.e., SQL queries) on views
to CROISSANT and receive results of the queries. The pre-de�ned
views are managed by CROISSANT which keeps the views in a
view database. CROISSANT accepts user queries written in SQL,
rewrites them into SPARQL queries, processes the queries onto
corresponding SPARQL endpoints, and returns the results of the
queries to users.

View designers describe views by SPARQL, where view com-
poses a quadruplet de�ned in De�nition 2.1. Though schemas of
views can be any format like relational, XML, JSON, and so on, this
paper assumes the format is relational because relational format
is one of the most common formats for Web applications and rela-
tional format directly �ts to returned results from SPARQL queries.

De�nition 2.1 (View De�nition). A view de�nition is composed
of the following quadruplet.

hname, schema, endpoint_url , SPARQL_quer�i
where name is the identi�er of the view, schema is a relational
schema of the view, endpoint_url is a URL of the SPARQL endpoint
with which the view is associated, and SPARQL_quer� is the SE-
LECT query which quarries a part of RDF data in the endpoint. ⇤

Based on the view de�nitions discussed above, CROISSANT han-
dles the view de�nitions as well as queries from users. To realize
this, CROISSANT consists of the following components: (1) view
design support for view designers, (2) SQL interface for users, (3)
query executor, (4) query optimization, and (5) view management.
View design support component aims at supporting view designers
building view de�nitions, SQL interface component allows users to
post SQL queries onto CROISSANT, and query executor component
�rst translates the given SQL queries into SPARQL, then performs
the SPARQL queries onto corresponding SPARQL endpoints, and
answers the SQL queries based on the results from SPARQL end-
points. In addition, query optimization component improves the
performance of query processing based on heuristic approaches
(shown in Section 3), and view management component allows view
designers to edit view de�nitions like addition, removals, updates of
view de�nitions and checks syntaxes and rules of view de�nitions.
Note that this paper mainly deals with the query optimization,
therefore, the following sections introduces the proposal of query
optimizations.

3 VIEW-BASED QUERY OPTIMIZATION
In a naïve method, user queries are performed as the following three
steps: CROISSANT (1) extracts relevant views for the input user
query, (2) performs the view queries to obtain individual results, and
(3) processes user queries over the results. The �rst step determines
SPARQL endpoints and corresponding SPARQL queries related with
user queries. Then, CROISSANT executes the SPARQL queries on
corresponding SPARQL endpoints to materialize contents of the
views onto the local storage. Finally, for the materialized views,
CROISSANT executes the user queries to obtain results. The naïve
method has critical performance drawbacks as follows:
• Execution cost: The naïve executes view query on SPARQL end-
points. The cost depends on the query processing performances
of SPARQL endpoints.
• Transport cost: Results of view queries must be transported to
the local server. The cost depends on the size of the results and
the network transportation latency.
In order to overcome the drawbacks of the naïve method, CROIS-

SANT employs four optimization strategies for performing user
queries. The individual optimization strategies will be discussed in
the next sections.

3.1 View Materialization
Performing SPARQL queries onto remote SPARQL endpoints is
costly comparing with SQL performing on local server (i.e., CROIS-
SANT server), and, in such situation, materialized views realize
signi�cant performance improvements. If the latest data of a view
are available on the local server, CROISSANT can perform SQL
query processing directly to materialized views without accessing
to remote SPARQL endpoints. CROISSANT in this paper assumes
relational views on SPARQL endpoints, thus each view can be ma-
terialized into local relational database. For other formats, view
data are stored in a corresponding databases, for example, Mon-
goDB3 for JSON views, and BaseX4 for XML views. Materialized
3https://www.mongodb.com/
4http://basex.org/



CROISSANT: query execution

• Naive execution
1. Execute SPARQL query of corresponding views

and store the results into local database.
2. Perform SQL query over the local database.

SELECT		title
FROM			movie
WHERE	budget	>	100,000

Input SQL

SELECT	?movie_id ?title	?budget
WHERE	{	?movie_id rdf:type dbo:Film.

?movie_id dc:title ?title.	
?movie_id dbo:budget ?budget.	}

View SPARQL query

movie_id title budget

Local database

title

Results

SPARQL
Endpoint



Performance issues

• Execution cost of SPARQL queries
• Immature performance of SPARQL endpoints

• Transportation cost from SPARQL endpoints

SELECT		title
FROM			movie
WHERE	budget	>	100,000

Input SQL

SELECT	?movie_id ?title	?budget
WHERE	{	?movie_id rdf:type dbo:Film.

?movie_id dc:title ?title.	
?movie_id dbo:budget ?budget.	}

View SPARQL query

movie_id title budget

Local database

title

Results

SPARQL
Endpoint



Query Optimization

• Basic idea: 
reduce #results from SPARQL endpoints
• Strategies
• View materialization

• Everything is transferred to local database in advance.
• Suffer from update issues.

• Projection push-down
• Selection push-down
• View query merge



Projection Push-down

• Push projection conditions into view 
SPARQL queries.
SELECT		title
FROM			movie
WHERE	budget	>	100,000

Input SQL

SELECT	?movie_id ?title ?budget
WHERE	{	?movie_id rdf:type dbo:Film.

?movie_id dc:title ?title.	
?movie_id dbo:budget ?budget.	}

Pushed-down View SPARQL query



Selection Push-down

• Push selection conditions into view SPARQL 
queries.
• Pushing rules

CROISSANT: Centralized Relational Interface for Web-scale SPARQL Endpoints iiWAS ’17, December 4–6, 2017, Salzburg, Austria

views su�er from view update problem and query processing using
materialized and non-materialized views.

In a traditional database situation where databases are assumed
to be local, trigger functionalities help notify changes to database
management systems and run program to restore the query results
to materialized view. This is obviously not applicable to SPARQL
endpoints on theWeb, because they are not under control of CROIS-
SANT. Some researches have attempted to realize the noti�cation
functionality (like [17, 22]), it is possible to use the functionality to
know when to update the materialized views, however this is still
an open problem.

Checking update on SPARQL endpoints is close to checking up-
dates on Web pages in Web crawling applications. In Web crawling
researches, Poisson distribution is a popular distribution of page
updates [5, 6]. Web crawlers can check cached Web pages based on
the Poisson distribution. Observations of LD dynamics [12, 19] can
be a help to introduce when to check updates of LD datasets, how-
ever, these observations are still not much helpful to characterize
LD datasets in terms of update frequency. Consequently, periodical
checking for updates of LD datasets is a compromising approach.
If the update frequency on an LD data source follows a probability
distribution (like Poisson distribution), Web crawling strategies
are applicable, that is, checking updates of view query results in
periods derived from the probability distribution.

Materializing views have a trade-o� w.r.t. database update fre-
quency. If the frequency is quite high (more than query response,
for example), it is not good option to materialize because of fresh-
ness of data in views. If a view is not materialized, query processing
on views su�er from time of view query processing and transport
of results. Thus, if the update frequency of original data of a view
in SPARQL endpoints is high, the view is kept non-materialized
and CROISSANT executes view queries whenever users execute
their queries. While, if the update frequency is low, the view is ma-
terialized eagerly and CROISSANT executes user queries directly
on the materialized relational view.

3.2 Selection Push-down
As optimization techniques in relational databases [18], in which
selection push-down is a typical and signi�cant approach to reduce
the number of relevant results on query operators, CROISSANT
employs selection push-down approach. The number of records
which meet selection conditions is typically signi�cantly smaller
than that of records in the tables. This observation indicates that
selection conditions should performed as soon in query plans as
possible, especially when join operations are included in the query.

CROISSANT involves applying selection push-down from user
queries to view queries. As user queries are written in SQL lan-
guage, selection conditions on user queries can be represented as
selection operators. CROISSANT then classi�es the extracted se-
lection operations into views (obviously, once CROISSANT knows
chosen relations and selection conditions on attributes of them,
it also knows corresponding views and SPARQL variables on the
views). Finally, CROISSANT puts FILTER clauses into view queries.

Pushed-down selection conditions should include � binary com-
parators (i.e., <, , =, �, and >) to compare an attribute with nu-
meric values and regular expression-based comparators for textual

Table 1: Conversion from selection conditions to SPARQL
FILTER clauses.

Comparator Variable type FILTER expression
� Numeric FILTER (variable � value)
= Textual FILTER (str(variable) = value)

l ike Textual FILTER regex(variable, value)

values. In order to deal with these operators, CROISSANT includes
rules to convert selection conditions into FILTER expressions. This
paper de�nes three basic rules in Table 1. The �rst rule is about
numeric conditions which directly put in the FILTER clause. The
second rule is about textual equality conditions. Because textual
values in RDF typically have language information (e.g., @enmeans
English text), direct comparisons do not work, str(·) function
is applied to return language-ignored textual values of variables.
The third rule is about regular expression-based textual matching.
Fortunately, SPARQL includes regular expression function called
regex(·) which judges whether textual values match with input
regular expressions.

3.3 Projection Push-down
Projection push-down is also a traditional query optimization tech-
nique in relational database researches, which puts projection con-
ditions onto sub-queries in order to reduce the size of tuples to
be returned. The intermediate projection conditions which do not
a�ect processing of intermediate results (such as join results) and
�nal results (�ltered out attributes) can be removed from the sub-
queries. In such cases, projection conditions on superior queries
can be pushed down into the sub-queries.

The same idea can be applied to CROISSANT situation, that is,
CROISSANT pushes the projection conditions on users’ queries into
the view SPARQL queries and remove other variables if the condi-
tions do not a�ect on both intermediate and �nal results. Basically,
CROISSANT pushes down projection conditions into correspond-
ing view queries. When CROISSANT attempts to remove projection
variables in view queries, it cares if the variables are included in join
conditions in users’ SQL queries. If included, CROISSANT remains
it on the view queries, and remove otherwise.

3.4 View Query Merge
Query performance of user queries depends on the numbers of
views included in the user queries because the numbers of views
are corresponding with that of SPARQL queries to be performed.
However, some of views may be of same SPARQL endpoints. If the
graph patterns in SPARQL queries in the view queries can be con-
nected (i.e., share same variables), these queries can be integrated
as a single SPARQL query. As a result of combination, there are
two bene�ts: (1) as graph patterns get complicated, the number of
results matching with the query can be decreased, in consequence,
result transport cost can be reduced; and (2) (relational) join pro-
cessing on the local server (typically, this is costly) can be ignored,
because the single SPARQL query returns the joined results.

Given a view set V of a user query Q , CROISSANT �rst extracts
join conditions between views, then merges corresponding views

SELECT		title
FROM			movie
WHERE	budget	>	100,000

Input SQL

SELECT	?movie_id ?title	?budget
WHERE	{	?movie_id rdf:type dbo:Film.

?movie_id dc:title ?title.	
?movie_id dbo:budget ?budget.	
FILTER	(?budget	>	100,000) }

Pushed-down View SPARQL query



Naive Join Query Processing

• Steps
1. Materialize joining views
2. Perform relational join

movie_id actor

Local database

title actor

Results

SELECT		m.title,	ma.actor
FROM			movie	m,		movie_actor ma
WHERE	m.movie_id =	ma.movie_id

Input SQL

SPARQL
Endpoint

movie_id title budget



View Query Merge ‒ motivation

• Naive join is not efficient if two views are 
of same SPARQL endpoints.
• Two separate SPARQL queries are performed.
• Two sets of larger results are transferred.

movie_id actor

Local database

title actor

Results

SELECT		m.title,	ma.actor
FROM			movie	m,		movie_actor ma
WHERE	m.movie_id =	ma.movie_id

Input SQL

SPARQL
Endpoint

movie_id title budget



View Query Merge ‒ approach

• Idea: 
Combine two view SPARQL query on the 
same SPARQL endpoint into a single query.
• Approach:

1. Combine projection variables into one set.
2. Combine graph patterns into one pattern set.
3. Put FILTER clause for join conditions.

• If a condition is equality of same attribute names, 
corresponding FILTER clause is eliminated.



View Query Merge ‒ example

SELECT	?movie_id ?title	?budget
WHERE	{	?movie_id rdf:type dbo:Film.

?movie_id dc:title ?title.	
?movie_id dbo:budget ?budget.	}

Movie view

SELECT	?movie_id ?actor
WHERE	{	?movie_id rdf:type dbo:Film.

?movie_id dbo:starring ?actor.	}

Movie-actor view

SELECT		m.title,	ma.actor
FROM			movie	m,		movie_actor ma
WHERE	m.movie_id =	ma.movie_id

Input SQL

SELECT	?movie_id ?title		?budget		?actor
WHERE	{	?movie_id rdf:type dbo:Film.

?movie_id dc:title ?title.	
?movie_id dbo:budget ?budget.	
?movie_id rdf:type dbo:Film.
?movie_id dbo:starring ?actor.
FILTER	(movie_id =	movie_id). }

Merged SPARQL query



Experimental Evaluation

• Objective: Check efficiency of CROISSANT
• Efficiency: query execution time

• Dataset: DBpedia (http://dbpedia.org/sparql)
• Views: movie, actor, movie_actor
• Queries (on the same SPARQL endpoint)
• Two selection queries of different selectivity

• Observe effect of selectivity
• Two join queries w/ and w/o selection condition 

• Observe effect of view query merge
• Observe overall performance of CROISSANT



Experimental Results

q0 q1 q2 q3
Queries

10�2

10�1

100

101

102

103

E
xe

cu
tio

n
an

d
tra

ns
po

rt
tim

e
(s

ec
,l

og
ar

ith
m

ic
)

P M SP MG MGSP

selection queries
left: low selectivity

right: high selectivity

join queries
left: w/o selection cond.
right: w/ selection cond.

Bars
P: Pure execution
M: Materialization
SP: Selection push-down
MG: View query marge
MGSP: SP + MP

Insights
• Materialization is 
obviously the best.
• Selection push-down 
works when low selectivity.
• View query merge is 
powerful for join queries.



Conclusion & Future Work

• CROISSANT
• Centralized interface
• Relational view-based interface
• Query rewriting from SQL to SPARQL
• Query optimization

• Experimental evaluation introduces optimization 
techniques work.

• Future work
• Update issue for taking full advantage of 
materialization
• Unified optimization with materialization


