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Multi-label Long Text Classification (MLLTC)

A special case of text classification that

» Longer text (than the length limit of classification
models; esp. pre-trained language models (PLM))

+ Multiple labels on the text (imagine the fine-
grained labels like topics of your papers)

Challenges:

» Handling long text within PLM input length limits

« Predicting multiple labels, especially for tail
classes (caused by long-tail distribution)

Topic Labels

» Long Text Classification
Multi-label Classification
Prediction Aggregation
Sentence-level Classification
Pre-trained Language Models
Extractive Summarization
Sentence-level n-grams
Class Imbalance

Efficient Training

etc.

ASC: the Simple-yet-Effective Proposed Method
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» The careful selection of sentences is effective. * # training samples increases by sentence
» The contextualization of sentences is effective. selection, and this leads higher training cost.

+ Single representation is not effective in MLLTC. » ASC still suffers from the class imbalance issue.



