
A special case of text classification that 
• Longer text (than the length limit of classification 

models; esp. pre-trained language models (PLM))
• Multiple labels on the text (imagine the fine-

grained labels like topics of your papers)
Challenges:
• Handling long text within PLM input length limits
• Predicting multiple labels, especially for tail 

classes (caused by long-tail distribution)
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Abstract. Classification is a fundamental task for metadata estimation
in archival document management within a digital library. Although pre-
trained language models (PLMs) have evolved significantly, multi-label
long text classification (MLLTC) remains challenging for PLM-based
text classification methods due to their input text length limitations.
Existing PLM-based classifiers typically utilize a single representation
for a long text. In contrast, this paper explores a sentence-level classi-
fication approach. The basic idea is two-fold: a sentence in a text can
often focus on one or a few classes, meaning multiple classes can be de-
rived from the individual sentences; furthermore, sentences can typically
fit within the length limit. There are two main issues with implementing
a sentence-level classifier: the loss of context for each sentence and the
increased training cost due to the larger number of documents that need
to be processed by a PLM-based model. To address these issues, this
paper proposes a framework, ASC, that uses sentence-level n-grams to
form a sentence representation and employs a sentence selection method
to reduce the number of sentences needed for training. The experimental
results demonstrate that ASC outperforms existing text-level classifiers,
achieving 25% and 48% improvements in Macro F1 metrics.
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1 Introduction

Text classification [18, 14] has long attracted attention from the Digital Library
(DL) community, with the expectation of supporting activities such as search-
ing, browsing, recommending, and visualizing [7]. Text classification has ad-
vanced through mechanisms such as the Transformer [22]. The performance of
text classification has been significantly enhanced by the successful implemen-
tation of pre-trained neural language models (PLMs), such as BERT [11] and
RoBERTa [16], which are trained on vast amounts of text data to construct
better text representations. Recent literature also considers token (or word)
information as an important auxiliary factor for text classification [24, 15, 5].
BertGCN [15], a successor of TextGCN [24], constructs a token-wise graph and
applies a graph convolutional network (GCN) to it, thereby obtaining token-
oriented document representations.

Multi-label Long Text Classification (MLLTC)

ASC: the Simple-yet-Effective Proposed Method
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Segment document carefully.

Estimate local labels and 
aggregate to global labels.

• Extractive summarization
 (e.g., TextRank[17]) to 
select k key sentences

• Sentence-level n-gram for 
context reconstruction

• PLM-based classifier for 
sentence-level classification

• Aggregation for each label 
by Max or Mean (or any)

Experimental Evaluation on Reuter-21578 and EURLex-57K with Macro-averaged Metrics
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• The careful selection of sentences is effective.
• The contextualization of sentences is effective.
• Single representation is not effective in MLLTC.

• # training samples increases by sentence 
selection, and this leads higher training cost.
• ASC still suffers from the class imbalance issue.

Topic Labels
• Long Text Classification
• Multi-label Classification
• Prediction Aggregation
• Sentence-level Classification
• Pre-trained Language Models
• Extractive Summarization
• Sentence-level n-grams
• Class Imbalance
• Efficient Training
etc.


