Towards Real-time Analysis of Smart City Data: A Case Study on City Facility Utilizations

<u>Takahiro Komamizu</u>, Toshiyuki Amagasa, Salman Ahmed Shaikh, Hiroaki Shiokawa, Hiroyuki Kitagawa University of Tsukuba, Japan

Data from Smart City

- Increasing demands for Smart City applications
 - Monitoring real-world
 - environmental conditions (e.g., air and water)
 - artificial objects (e.g., roads and buildings)
 - citizens opinions (e.g., social networks)
 - Analyzing for smart lives
 - decision making (e.g., air pollution prevention policy)
 - facility management (e.g., roadway management)
- Data from smart city tend to be multi-dimensional.
- Real-time analysis of smart city data has been becoming an increasing demand.

OLAP: multi-dimensional analysis

OLAP + Real-time analysis Interacting for OLAP Visual Interface User Stream **StreamOLAP** Processing Engine (SPE) . . . +Wrapper Wrapper Wrapper Wrapper Wrapper **OLAP** Engine

Dd.

city

waste

collection facility

SNS

traffic

road

state

StreamOLAP[Nakabasami et al. Big Data 2015]

Purpose of this paper

- Realize that StreamOLAP system is applicable for real-world (esp. smart city) data.
- Share experiences for StreamOLAP application using *city facility utilization* logs.
 - OLAP operation case study
 - Visualization concerns

City Facility Utilization logs

- Field: Tsukuba city, Japan
- Log: who, when, and where, a user used
- User info.: Attributes of users
 - For privacy prevention, we cannot obtain raw data.
 - e.g., address is anonymized to postcode.

(a) City facility	utilization	log.
-------------------	-------------	------

Attribute	Description	
Log ID	Record identifier.	
Facility	Name/ID of utilized facility.	
Room	Name/ID of utilized room.	
Date	Date of utilization.	
Time	Starting and ending time of utilization.	
Purpose	Purpose of utilization.	
User	Name/ID of utilizing users.	
Fee	Amount of payment for utilization.	
Num. of People	Number of utilizing users.	
Location	Latitude and longitude of facility.	

(b) U	ser	inform	ation
-------	-----	--------	-------

Description
Name/ID of user (group in reality).
Purpose of user for his/her utilizations.
Number of users.
Anonymized address of representative user.
Ward of user. This is higher abstraction of Postcode.
Type (e.g., Kids, elders, etc.) of user.

Analytical Scenarios

We discuss practical scenarios with practitioners in Tsukuba city and the following are three of them.

- 1. Analysis with drill-down operation
 - Showcasing capabilities of drill-down operations.
- 2. User location-based analysis
 - Investigation w.r.t. locations of users and facilities
- 3. Map visualization
 - Visual results of the location-based analysis

 Suppose a user is interested in utilization ratio of facilities, then the system displays overall utilization ratio for each facility.

• As she has a concern about facility E, she selects to slice and drill-down for rooms in E.

• Then, she gets interested in handicraft room of E, so she drill-down into months.

• She drills down into hour-level in order to observe what are the popular time in a day.

User Location-based Analysis

• City officers assume there are relationships between user locations and facilities.

Count-based view

Ratio-based view

Map Visualization

• Visualize the relationships on maps in order to understand geographical relationships.

Overall

Ward 2

Conclusion

- Real-time analytic framework for smart city
- Case study on real-world smart city data based on practitioners' advices
 - City facility utilization logs from Tsukuba city
 - Basic analytical scenario
 - Location-based visualization
- Future work
 - Extend the framework for more heterogeneous data.

Thank you for your kind attentions.