Exploring Identical Users on GitHub and Stack Overflow

<u>Takahiro Komamizu</u>, Yasuhiro Hayase, Toshiyuki Amagasa, Hiroyuki Kitagawa

University of Tsukuba, Japan

Mining Software Repository (MSR)

- MSR is a data mining field
 - Analysis of software in the repositories
 - · How the software are used?
 - What are the popular software?
 - Which part of the codes can be reused in other software?
 - ...
 - User behaviour analysis
 - Who are the professionals of a particular language (e.g., Java, Python, Scala)?
 - Who are suitable for solving issues on projects?
 - Who can give advices for improving software in some aspects (e.g., performance, usability)?

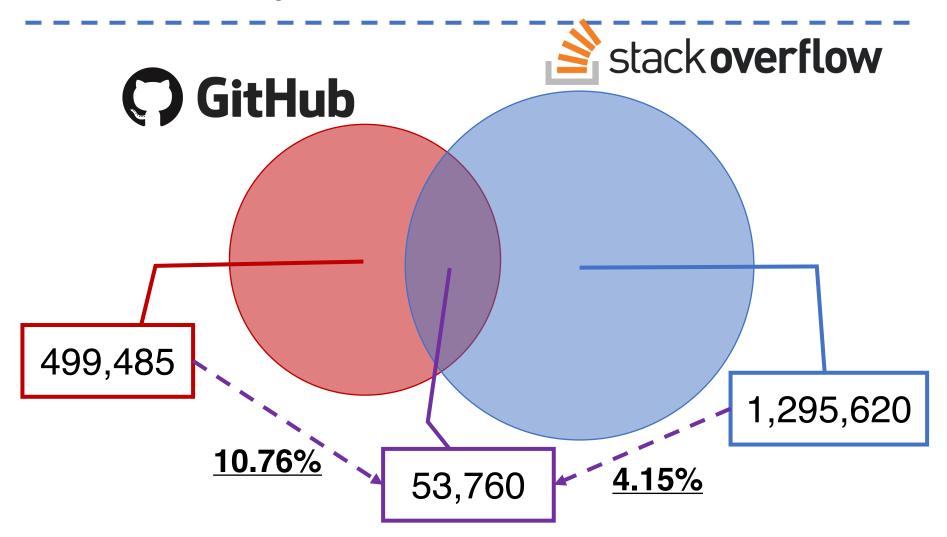
User Behaviour Analysis on MSR

- User profiling
 - Mainly based on users' activities on repositories
 - e.g., commits, bug fixing
 - For instance,
 - Users who commits lots of Java codes can be regarded as Java professionals.
 - Users who solve lots of issues can be regarded as good issue solvers.
- Problem: lack of information
 - newly registered users
 - users having few activities on repositories

Approach: Cross-platform Analysis

In cooperating with other platforms

GitHub + stackoverflow

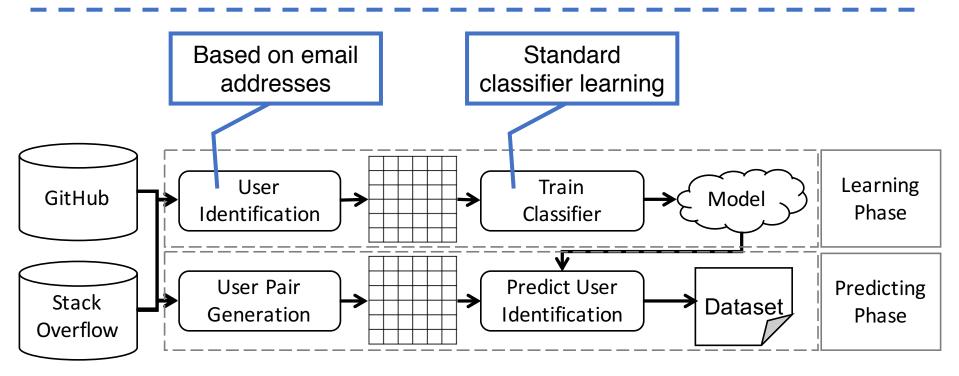

- Expectation
 - Users' activities in other platforms can be imported as supplemental facts of the users.
 - For instance,
 - Users answering questions about Java programming are professional of Java.
 - Users asking questions about some libraries may be interested in participating their developments.

User identification b/w GH and SO

- Users can be identified by hashed values of email addresses
 - Email addresses on Stack Overflow are hashed by MD5 function.
 - Those on GitHub are raw string.
 - Hashing email addresses on GitHub make it possible to match with those in Stack Overflow.

MD5 (**C** GitHub) == Stackoverflow

How many the identifiable?


[1] G. Gousios, "The GHTorent Dataset and Tool Suite," in *MSR 2013*, 2013, pp. 233–236. [2] A. Bacchelli, "Mining Challenge 2013: Stack Overflow," in *MSR 2013*, 2013. Is email address only way to identify? – No.

- Same users can easily use other email addresses in various reasons.
 - A user changes her email address from service to service.
 - Another changed her email address caused by some reasons.
- Profile information have many commonality.
 - Similar / same user-name
 - Close locations (e.g., Pittsburg vs. PA)
- Users' activities also have commonality.
 - Projects and questions.

This paper

- Purpose: increase the num. of the identifiable
 - The more information about users, the more evidence for cross-platform analyses.
- Attempt: identify users
 - Identify users from other information than email addresses.
- Contributions
 - Classification-based user identification mechanism
 - Examining standard classification methods
 - Public datasets and tools
 - https://github.com/Taka-Coma/PJD_GHSO

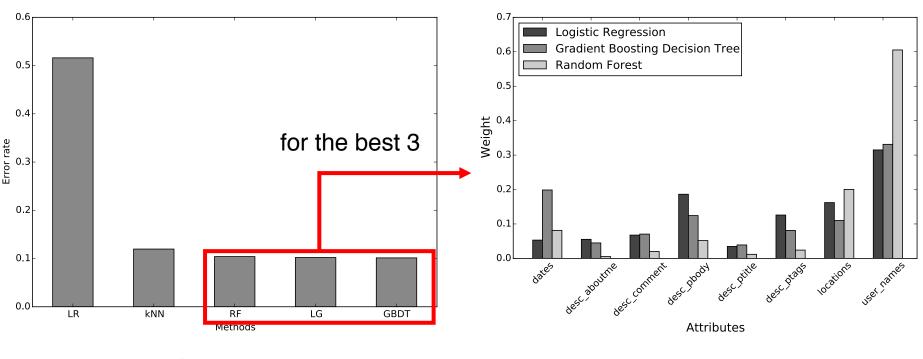
The framework

- Issues
 - Attributes selection
 - Label skewness

Attributes selection & similarity

Attributes on GitHub	Attributes on Stack Overflow]
users.name	users.display_name	- 3gram-based cosine sim.
users.location	users.location	- TFIDF-based cosine sim.
users.created_at	users.creation_date	 Inverse of time diff.
projects.description	users.about_me	
projects.description	posts.body	
projects.description	posts.tags	FIDF-based cosine sim.
projects.description	posts.title	
projects.description	comments.comments	

$$Cosine(\mathbf{v}_1, \mathbf{v}_2) = \frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{|\mathbf{v}_1| |\mathbf{v}_2|} \quad DateSim(date_1, date_2) = \frac{1}{|date_1 - date_2|}$$


Skewness problem

- Quite small number of positive samples comparing with that of negative samples
 - Positive: the identifiable via email addresses
 - Negative: other pairs (combinations of users)
 - In the dataset
 - #pos = 53,760
 - #neg = 96.5 billion
- If highly skewed, classifier always answers labels of majority (i.e., negative).
- Approach: Down sampling the negatives

User identification examination

- Datasets:
 - MSR challenge datasets: 2013[2] and 2014[1]
- Classification methods
 - Linear regression (LR)
 - k-nearest neighbor (kNN)
 - Random forest (RF)
 - Logistic regression (LG)
 - Gradient boosting decision tree (GBDT)
- 10-fold cross validation

Evaluations

Error rate

10% error

More sophisticated classification methods have chance to improve.

• Users have similar names on GH and SO.

Weights for attributes

• Locations equally contribute in these classifications.

Conclusion

- User identification problem b/w GH and SO
- Formulate as classification problem
 - Attribute selections
 - Skewness problem \rightarrow down sampling
 - Standard classification methods
- Evaluations
 - 10% classification error
 - Attributes differently contribute on different classification methods
- Future work
 - Improve with more sophisticated classification methods.