Image Impression Estimation by Clustering People with Similar Tastes

(Nagoya	Univ.)
(Nagoya	Univ.)
(RIKEN)	
(Chukyo	Univ.)
(Nagoya	Univ.)
	(Nagoya (Nagoya (RIKEN) (Chukyo (Nagoya

Who thinks this 'cute'?

Can we estimate the different impressions for each person?

Yes, if we have "enough" amount of information about the individuals.

No, it is difficult to obtain "enough" amount of information about the individuals.

Estimation from limited amount of data

Personal Attribute Combination Grouping

Image Clustering

 To estimate impression tendency to images more accurately, annotations of similar images are aggregated.

Personal Attribute Combination (PAC)

- To characterize a PAC, its feature is represented by the tendency of impressions toward images
- Clustering: k-means algorithm

Images: 4,000 carpets / curtains / fabrics

Evaluation

- Annotation: 273,163 annotations
 - 24 impression words from query logs
- Metric: Impression estimation accuracy

Method	#Elements	Accuracy [%] \uparrow
Proposed	2	73.1
All-in-one	1	72.4
Gender-Age [1]	6	71.2
Individual	4,704	68.1

- All-in-one: Personal attributes were ignored.
- Gender-Age: A heuristic combination [1]
- Individual: Each personal attribute combination was regarded separately.

			#PAC Clusters					
	Accuracy				k_A			
	[%	6]↑	2	3	6	10	20	
S		100	71.5	71.7	70.7	69.6	68.3	
ē		200	72.4	71.8	71.3	70.8	69.4	
st		300	72.6	71.8	71.0	69.6	69.9	
⊒		400	73.1	71.9	72.1	69.9	70.1	
0	k_I	500	72.0	71.5	71.2	70.6	69.5	
ð		1,000	72.0	71.9	71.3	70.1	70.3	
ğ		2,000	72.0	71.9	71.3	70.6	70.1	
Ε		3,000	71.7	71.8	71.5	71.1	69.9	
#		4,000	72.1	70.1	71.6	69.2	68.8	

[1] M. Nakamoto, et al., "A study on product image impression estimation considering the customer's attributes (in Japanese)," IEICE 2021 Annual Convention, D-12-5, 2021.

