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I Image Retrieval: Search Images for Query Intent

» Content-based image retrieval (CBIR)

 Query: an image containing target objects @] —
* Text-based image retrieval

» Query: a text describing what you want to find b —

» Compositional image retrieval

 Query: a close image and
a text describing desired modifications to it

— (&

w o

The choice of retrieval models depends on

the expressiveness of query intent.



Possible Requirements on CBIR
=>» Various types of “relevance” = “Semantic” Image Retrieval

Exact or Similar Image Search Object- and Scene-Based Search

« Exact duplicate search: Find identical copies (e.g., resized, * Object-based retrieval: Find images that contain a specific
cropped, or compressed versions). object (e.g., “dog”, “car”).

 Partial similarity search: Find images containing * Relational search: Retrieve images with multiple objects in
overlapping or shared regions (e.g., same logo or object). certain relationships (e.g., “a person walking a dog”).

« Geometrically invariant search: Retrieve similar images » Scene-type search: Retrieve scenes such as “beach”,
regardless of rotation, scaling, or viewpoint changes. “classroom?”, or “city street”.

« Style similarity search: Retrieve visually similar images in « Spatial relationship search: Specify relations like “a cup
terms of color tone, composition, or texture. on a table” or “a person standing beside a car”.

Semantic or Concept-Level Search Visual Feature / Style / Color-Based Search

« Semantic similarity search: Find images conveying similar » Color-based retrieval: Find images dominated by a certain
meanings (e.g., “wedding”, “sports”). color (e.g., red background).

« Emotion/mood-based search: Retrieve images expressing » Texture-based retrieval: Search for similar texture patterns
certain moods (e.g., “bright atmosphere”, “peaceful (e.g., fabrics, materials).
scenery”). « Shape-based retrieval: Retrieve objects with similar

* Event or activity-based search: Retrieve “people running”, outlines or silhouettes.
“people eating”, etc. + Art-style search: Retrieve images with similar artistic

styles (e.g., impressionist, sketch).



I Representations in Semantic Image Retrieval

Low-level features:
SIFT, color histogram

Appearances of
objects matters.

Caption:
textual description

NS

Visual features:
DNN-based encoders

The image depicts
a person standing
on a snowy terrain,
likely a ski resort or
a snowboarding
area. The individual
is wearing a black jacket, brown
pants, and a helmet, which
suggests they are engaged in
winter sports, specifically snow-
boarding. The person is ...

Appearance
somewhat matters.

Appearance of
image matters.

The choice of representations depends on

the requirements of query intent.

Scene graph:

object-object relationships

mountain —( behind ;\horse
| riding )
man —» wearing —— hat

wearing — shirt

Appearance
does not matter.




I Scope of this research ﬂ

» Research objective: adaptive semantic image retrieval system
« To deal with various requirements in CBIR.
 No retrieval method may fit all requirements.
» Because they are dependent on basic representations.
 This paper: analysis on relationships between representations
 Dataset: Visual Genomel'?]
* Representations: Scene graph, Visual feature, Caption

Representations Vectorization Similarity Function

Jaccard similarity
between sets of triplets

Visual feature DINOv2[17] Cosine similarity

Detailed caption generated by Qwen2-VL[25]
and E5[24] to encode texts into vectors

Scene graph Annotation in the dataset

Caption Cosine similarity




I Correlation Analysis

Lower Correlation

Scene graph vs. visual and caption
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Higher Correlation

Visual vs. Caption
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(c) Visual Feature vs. Caption Embedding




I Examples of retrieval results

QE1 - SG: 0.75 (High), Vis: 0.13 (Low), Cap: 0.86 (Med.) QE2 - SG: 0.03 (Low), Vis: 0.13 (Low), Cap: 0.98 (High)

(a) Query (b) Retrieved (c) Query (d) Retrieved
QE3 - SG: 0.67 (Med.), Vis: 0.91 (High), Cap: 0.92 (Med.) QE4 - SG: 0.04 (Low), Vis: 0.81 (High), Cap: 0.79 (Low)
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(e) Query (f) Retrieved (8) Query (h) Retrieved

(SG: Scene Graph, Vis: Visual Feature, Cap: Caption)



I Lessons Learned ﬂ

* Weak correlation b/w scene-graph and embedding while
high correlation b/w embedding methods
=» Scene-graphs capture distinct relational semantics.

« Suggestions

« Scene-graph: Applications (e.g., robotics or surveillance) object configurations
matter may benefit from incorporating scene-graph information.

* Visual and caption: They are better suited for aesthetic or thematic retrieval tasks
where global appearance and scene atmosphere dominate.

* To realize adaptive semantic image retrieval system

* Investigation of fusion strategies
« weighted combination, learnable fusion, re-ranking with structural constraints
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I Conclusion .

 Analysis on relationships between representations
 Dataset: Visual Genomel'0]
* Representations: Scene graph, Visual feature, Caption

* Results: Weak correlation b/w scene-graph and embedding while
high correlation b/w embedding methods
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I Future directions .

SG: 0.07, Vis: 0.16, Cap: 0.98
* Increase the number of datasets N

Query

to analyze

* Improve scene-graph quality

» Develop open-vocabulary and detailed
scene-graph generation method

* Realize an adaptive semantic

image retrieval mechanism Q what users want with the input image?
) Estlmajuon of query intent is Exact or Similar Image Object- and Scene-Based
d COore Issue. Search Search
Semantic or Concept- Visual Feature / Style /

Level Search Color-Based Search



