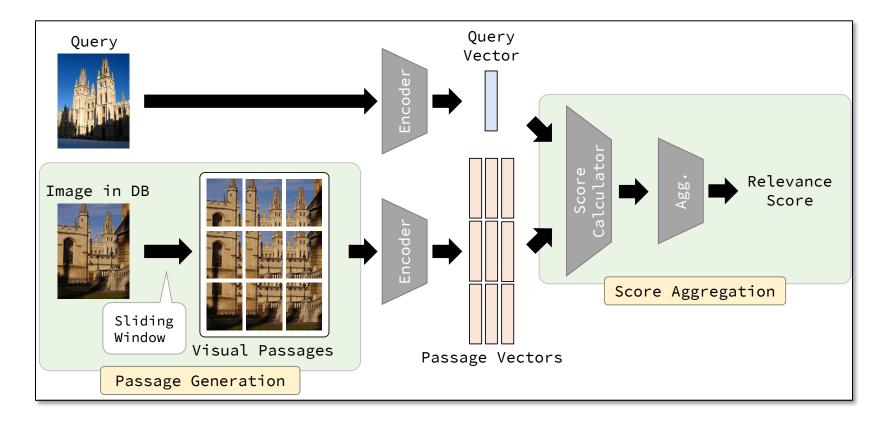
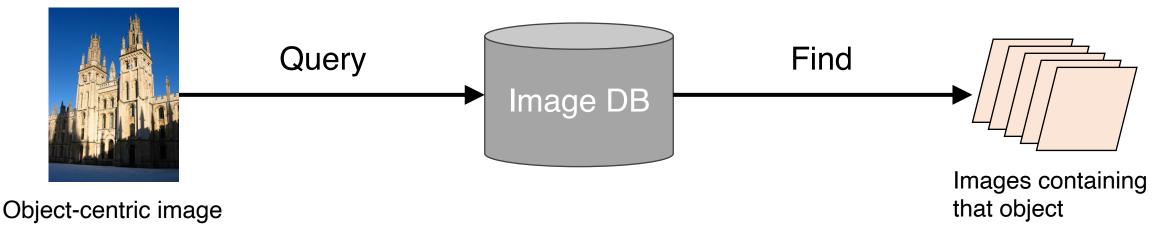
Visual Passage Score Aggregation for Image Retrieval

Takahiro Komamizu (taka-coma@acm.org, https://taka-coma.pro/)

Nagoya University



Content-based Image Retrieval



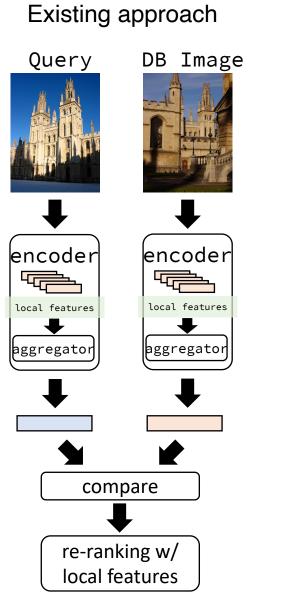
- Keys
 - Representations of images (query and images in DB)
 - → SIFT, CNN, ViT, etc.
 - Various sizes of objects in each image in DB
 - Some contains an object in the major part of an image.
 - Some contains an object in a small part w/ or w/o occlusion.

Learning to Rank

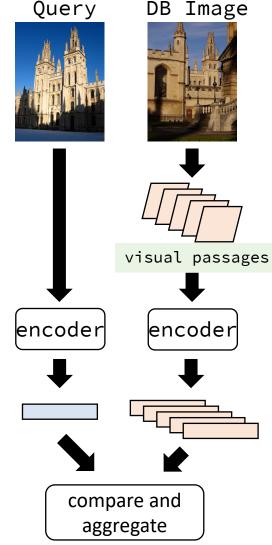
- Representations of images may not be good enough for retrieval.
 - k-NN search with the representations is not enough.
- Geometric verification (taking local info more into account)
 - CVNet^[5] is the state-of-the-art
 - Find matching of geometric points between query and database images
- Drawback
 - Large amount of training data required
 - Larger inference time
- Common approach
 - Re-ranking is applied for roughly searched top-k images.
 - Compare query image with top-k images (point-wise, pair-wise, and list-wise)

Basic Idea

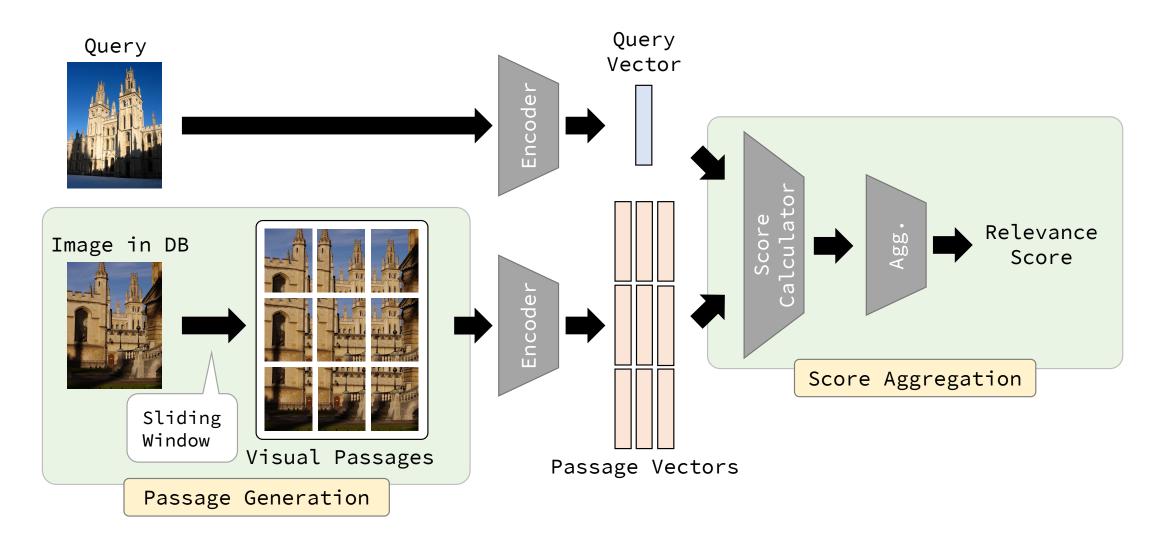
- A question "can we realize a single representation to express (complicated) contents of an image?"
 - → Idea1: Multiple representations for each image.
- The performance of re-ranking approach is bounded by the top-k search results.
 - Expected results not included in the top-k results cannot be re-ranked.
 - → Idea2: Local information into representations of each image



Proposed approach

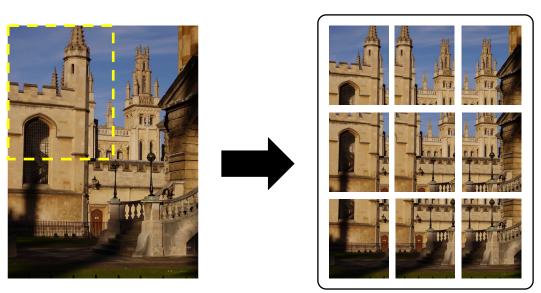


Proposed: Visual Passage Score Aggregation (VPSA)



Sliding Window-based Visual Passage Generation

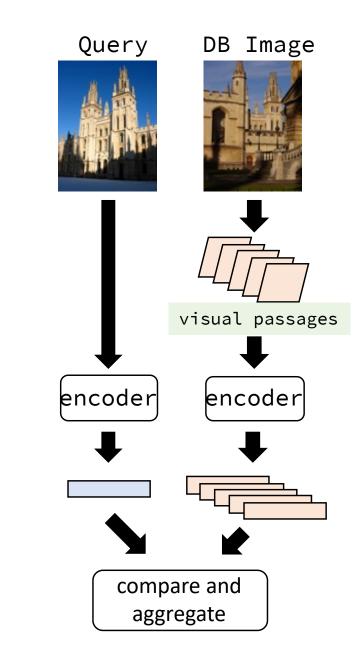
- Visual Passage: a part of image
- · Idea in this paper
 - **Coverage**: the set of visual passages covers all part of the image
 - **Overlapping**: not to split objects around the window boundary
 - Same number of visual passages among DB images: to ease the data management



Visual Passages

Retrieval using Visual Passages

- Each visual passage is encoded into a vector.
- Retrieval procedure
 - Calculate similarity b/w query and passage
 - For each DB image, aggregate the similarity scores over its visual passages
 - Rank images based on the aggregated scores
- Aggregation strategy: Mean, Max
 - Inspired from text passage-based long document retrieval



Experimental Evaluation

- Dataset: Revisited Oxford5K / Paris6K + Destructor set (1M)
 - Images about buildings, destructor set contains confusing images
 - 70 queries for each
- Metrics: MAP (mean average precision)
- Comparative methods
 - NN: Nearest neighbor method (baseline)
 - DOLG^[32], TBR^[29]: Local feature aggregation approaches
 - **DFS** (Offline Diffusion)^[31]: an efficient diffusion-based approach
 - **RRT**^[23], **CVNet**^[13]: Re-ranking approaches

Aggregation Functions

- Max was the best.
 - Local features via visual passages increased the retrieval performance.
 - The most similar part of an image is important when the target objects appeared differently in DB images.
- Mean was worse than NN, and

its performance drop in HARD datasets was larger.

- Treating all passages equally had negative effect.
 - \rightarrow Weighted approach can be a future solution.

Method		Med	IUM	Hard		
		ROxf	\mathcal{R} Par	ROxf	\mathcal{R} Par	
Baseline:	NN	80.2	90.3	63.1	79.1	
Proposed:	VPSA-Mean	71.5	87.6	42.7	73.3	
Proposed:	VPSA-Max	85.5	91.2	70.6	81.6	

Comparison to Comparative Methods

Method	Base Feature	Approach	MEDIUM			HARD				
			ROxf	$+\mathcal{R}1M$	\mathcal{R} Par	$+\mathcal{R}1M$	ROxf	$+\mathcal{R}1M$	<i>R</i> Par	$+\mathcal{R}1M$
DOLG [32]	R101-GLDv2-clean	LF	81.5	77.4	91.0	83.3	61.1	54.8	80.3	66.7
TBR [29]	R101-GLDv2-clean	LF	82.3	70.5	89.3	76.7	66.6	47.3	78.6	55.9
DFS (10^3) [31]	R101-CVNet-Global	DFS	78.6	76.0	90.9	<u>88.5</u>	59.8	57.3	<u>83.8</u>	<u>79.5</u>
RRT [23] (top100)	R50-GLDv2-clean	RR	78.1	67.0	86.7	69.8	60.2	44.1	75.1	49.4
RRT [23] (top400)	R50-GLDv2-clean	RR	80.5	70.6	89.1	73.8	64.2	49.5	78.1	55.6
CVNet [13] w/o RR	R101-CVNet-Global	NN	80.2	74.0	90.3	80.6	63.1	53.7	79.1	62.2
CVNet [13] (top100)	R101-CVNet-Global	RR	85.6	79.6	90.6	81.5	72.9	64.5	80.4	66.2
CVNet [13] (top400)	R101-CVNet-Global	RR	<u>87.2</u>	<u>81.9</u>	<u>91.2</u>	83.8	<u>75.9</u>	<u>67.4</u>	81.1	69.3
VPSA-Max	R101-CVNet-Global	VP	85.5	79.0	91.2	81.3	70.6	60.5	81.6	63.3
VPSA-Max + DFS (10^3)	R101-CVNet-Global	VP+DFS	<u>85.6</u>	<u>81.2</u>	<u>92.6</u>	<u>89.6</u>	<u>72.7</u>	<u>64.7</u>	<u>86.5</u>	<u>80.1</u>

- VPSA-Max performed superior to the most of methods, and was comparable with CVNet (the state-of-the-art).
- To combine the diffusion mechanism, the performance increased.

Efficiency

- Though the retrieval performance was comparable to CVNet, retrieval time of VPSA was smaller.
 - Re-ranking methods were still challenging in the efficient inference.
- VPSA took larger time than NN.
 - The number of vectors stored in a database can be easily large.

Model	Time (70 queries)	Time per Query
NN	0.62 sec	0.009 sec
VPSA-Max	0.94 sec	0.013 sec
VPSA-Max + DFS	28.12 sec	0.402 sec
CVNet (top100)	9 min 25 sec	8.071 sec
CVNet (top400)	28 min 53 sec	24.757 sec

Conclusion and Future Work

- Conclusion
 - VPSA: Visual Passage Score Aggregation
 - Visual passage: a crop of an image
 - Aggregation: similarity scores are aggregated via Max or Mean function
 - Experiment showed the effectiveness and efficiency of VPSA
- Future Work
 - To explore methods to improve effectiveness, other representation schemes (like ViT and Swin Transformer) will be tested.
 - To seek a way of combining strengths of VPSA and re-ranking methods.