
FPX-G: First Person Exploration for Graph

Takahiro Komamizu, Shoi Ito,
Yasuhiro Ogawa, Katsuhiko Toyama

Nagoya University

Social Network Knowledge Graph Subway Network

Graph: a general data structure

Graph 𝐺 = (𝑉, 𝐸, 𝐴)

Many others: protein-protein interaction, call graph of software, road network, etc.

2

Graph Search, Exploration and Visualization
• Task: seeking information from a graph
• Graph Search

• Given a graph query (e.g., graph pattern, keyword),
find subgraphs matching to the query
• e.g., GraphQL, SPARQL, Cypher

• Graph Exploration
• Interactive seeking
• Procedure (like browsing Web sites)

• Repeat: (1) visit a vertex and
(2) choose a neighbor to explore

• Graph Visualization
• Bird-eye-view of a graph
• e.g., Gephi, Cytoscape, Argo Lite

Good when users have
clear information needs.

Good when users have
unclear information needs.

Good when users want to
analyze graph structures.

3

Graph Exploration: browsing approach
4

Exploration process is go-and-back the links.

Graph Visualization as an Exploration Tool
5

Looks nice if #vertices and #edges are small. In reality, #vertices and #edges are large.

Graph visualization is mainly done in 2D space.

Our approach for Graph Exploration
• Drawbacks of existing approaches

• Browsing approach
• Neighboring vertices can be only accessible.

• Visualization approach
• Limitation of 2D space for visualization

• When the size of a graph is large, visualization may not be recognizable.

• Our approach (FPX-G) utilizes 3D space.
• Motivated to realize an approach in-between existing approaches
• Visualizing a subgraph in 3D space
• Vertices in some hops away can be accessible.
• VR (virtual reality) technology

• Users can access vertices in a walk-through manner.

6

Related Work: Graph + VR
• Graph visualization with gesture-based interaction [24]

• Bird-eye-view based visualization
• Hand gesture-based interactions:

shift, highlight, rotate, and group

• Dynamic graph analysis [26]
• Bird-eye-view based visualization
• Analysis: topological analysis
• Interactions

• Changing analytical views between overview and detailed
• Changing analytical views in time axis

7

[24] Y. Huang, et al., “A Gesture System for Graph Visualization in Virtual Reality Environments,” in PacificVis17, 2017, pp. 41–45.
[26] J. Sorger, et al., “Immersive Analytics of Large Dynamic Networks via Overview and Detail Navigation,” in AIVR19, 2019, pp. 144–151.

Fig. 3. A sequence from a temporal transition between three time frames
(in detail perspective). The time-bar on top of the laser-pointer indicates the
current time step. Top right: the transitional state between steps 5 and 6. The
green arrow points to the position of the overview camera.

D. Implementation
The system is implemented as a client-only web appli-

cation, i.e., no server-side scripts need to be executed at
runtime, making the deployment and usage of a VR application
as straightforward as publishing and accessing a website.
The code is written in JavaScript using three.js [43] and
A-Frame [44]. The interface between the VR application
(i.e., the web-browser) and the VR hardware is handled by
SteamVR [45] that natively supports the HTC Vive. The
foundation of our system is based on an open source library
for viewing graphs in VR [46]. At the time of writing, this
core library handles the loading, layout, and rendering of the
graph, and offers mouse and keyboard navigation outside of
VR. We extended this core in multiple ways to support the
presented VR navigation and interaction capabilities, as well
as to improve its rendering performance. The most notable
extensions are VR controller support for the HTC Vive,
graph navigation and interaction modes, the calculation of
a bounding sphere for the overview rotation, and the dual
perspective setup. Performance improvements are achieved
through instancing node and edge geometries via three.js
InstancedBufferGeometry. The adjustment almost doubles the
achieved frame rate on the largest graph of the performance
evaluation (2000 nodes, 6000 edges subsection V-A), from 13
to 22 frames per second.

V. EVALUATION

We evaluate our approach by means of a quantitative and
qualitative evaluation. The former is carried out as a perfor-
mance analysis of the tool, in terms of a frame rate benchmark
with networks of increasing size (see subsection V-A). The
latter is carried out through a case study with two domain
experts who were asked to perform a walk-through in their

Fig. 4. System performance comparison. On the y-axis the average frames per
second; on the x-axis the perspective in which the measurement was taken.

own healthcare data set to evaluate how our design choices
reflect on their use of the system (see subsection V-B). Both
experiments are run on the same test setup, on a desktop
PC equipped with an AMD Threadripper 1900-X CPU with
32GB of RAM and a Geforce GTX 1080 Ti graphics card.
The headset used is an HTC Vive head-mounted display and
controllers.

A. Performance and Frame Rate

The frame rate, or the number of frames per second (fps),
has a significative impact in the success rate of pointing
tasks [47]. If unstable or too low, it can play a role in causing
motion sickness [48]. Therefore, it is necessary to render
stereoscopic images with a fluid and stable frame rate. To as-
sess the performance of our system in this regard, we simulate
a typical use case scenario on increasingly large graphs and
record the frame rate in three configurations: a static overview,
rotation of the network in the overview, and navigation in the
detail perspective. As a benchmark, we created three random
graphs (using the Erdös-Reyny [49] model), with 500, 1000,
and 2000 nodes, and an average node degree of 3 (i.e., with
1500, 3000, and 6000 edges respectively). Additionally, we
use 2 real-world data sets that include the one used in our
case study: MedNet F4 with 199 nodes and 593 edges (see
subsection V-B) and MedNet with 692 nodes and 3047 edges,
for a total of five graphs. The results are reported in Figure 4.
The chart shows that with the smallest graph the average
fps rate is about 85, with no major difference on the two
perspectives. As the size increases, the average frame rate
drops down to 35-40 fps with a low of about 22 fps for the
largest graph. The rotation in the overview perspective requires
the most computing power, since the entire graph is on screen
while being animated. In the detail perspective instead, only
a portion of the graph is visible thus reducing the load on the
graphics hardware. It is worth mentioning that on real-world
data sets, performance was satisfactory: the MedNet F4 graph,
used during the case study (see subsection V-B) rendered with
∼85 fps for smooth navigation and interaction. When pushing
the system with the largest graph (2000 nodes, 6000 edges),

���

Authorized licensed use limited to: NAGOYA UNIV. Downloaded on December 18,2020 at 02:37:40 UTC from IEEE Xplore. Restrictions apply.

Fig.3 of [26]

Figure 1: The gesture set used in our system. Please see also the accompanying video for an illustration of these gestures.

Table 2: The tasks used in user study.

1. Brain graph

(Task 1.1) Find the names of two marked nodes, and the value
of the link connecting them.

(Task 1.2) Find all nodes connected with two marked nodes.
(Task 1.3) Following the previous task, what are the values of

the edges between the found nodes and the marked nodes?
2. Force-directed graph

(Task 2.1) Find the nearest node to a marked node.
(Task 2.2) Find all nodes connected with two marked nodes.
(Task 2.3) Find the shortest path between two marked nodes.
3. BioLayout graph

(Task 3.1) Find all nodes connected with two marked nodes.
(Task 3.2) How many nodes in a group colored with yellow?
(Task 3.3) Following the previous task, what are the colors of

each of the groups connecting to the yellow group?

19 to 32. Both the gesture and the mouse groups have seven partic-
ipants. Eight of them have computer science background, equally
distributed in the two groups. The others have backgrounds on en-
vironmental engineering, civil engineering, biomedical, chemistry,
economics, and early childhood education.

Procedure. The participants were invited to our laboratory, and
given a pre-experiment survey concerning the questions about pre-
vious knowledge of the VR platforms and computer games. We
separated them into the mouse group and the gesture group accord-
ing to this survey to make the capability of the two groups similar.
Next, we introduced the experiment and gave a tutorial of the system.
The tutorial began with a video illustrating each operation, and then
the participant put on the VR headset and practiced each operation
with a simple graph (Figure 2(d)) until s/he felt skilled enough. After
practicing, each participant needed to take a test where we asked
participants to perform the eight operations in a random order. The
participant was required to pass this test to start the experimental
tasks. The participant was required to finish the current task be-
fore starting the next one. After finishing all tasks, we asked the
participants to fill in a questionnaire about their using experiences.

5 RESULTS

We provide the experimental results in four aspects: accuracy, diffi-
culty of each operation, completion time and user experience.

Difficulty of Operations. Figure 3 shows the difficulty level of
each operation rated by the participants in the questionnaire with
a five-point Likert scale (five means the most difficult). Since the
variables are ordinal and the distribution of the difficulty level of
each operation had heteroscedasticity of variance, we applied the
Brunner-Munzel test [10]. Looking at each operation, the Brunner-

(a) Brain graph (b) Force-directed graph

(c) BioLayout graph (d) The graph for practice

Figure 2: The graphs provided in the user study.

Munzel test revealed the significant differences in following oper-
ations: move a node (p < .009), move an edge (p < .02), rotate a
graph (p < .003), and group (p < .02). The gesture was easier to
move a node, move an edge, and rotate a graph. Conversely, the
mouse was easier for the grouping operation.

Accuracy. We define accuracy rate as the percentage that partic-
ipants were able to give the correct answers on their first answer.
Figure 4 shows the result of accuracy rate through all tasks for each
graph and of each task. Accuracy rate also did not follow a normal
distribution and had heteroscedasticity of variance. Therefore, we
used the Brunner-Munzel test. However, there was no significant
differences in accuracy rate for each graph and each task.

Completion Time. Figure 5 compares the average completion
time for the practice, tasks in each graph, and each individual task.
The practice included a tutorial of the system, practice of the system,
and a simple test. The completion time also did not follow a normal
distribution and had heteroscedasticity of variance. The Brunner-
Munzel test revealed significant differences in the completion time
for the practice (p< .03), the tasks of the BioLayout graph (p< .02),
and the task 3.2 (p < .05). The gesture group spent more time than
the mouse group in the practice task. Conversely, the gesture group
spent less time than the mouse group in the task 3.2 and the tasks of
the BioLayout graph.

43

Authorized licensed use limited to: NAGOYA UNIV. Downloaded on January 05,2021 at 02:49:25 UTC from IEEE Xplore. Restrictions apply.

Figure 1: The gesture set used in our system. Please see also the accompanying video for an illustration of these gestures.

Table 2: The tasks used in user study.

1. Brain graph

(Task 1.1) Find the names of two marked nodes, and the value
of the link connecting them.

(Task 1.2) Find all nodes connected with two marked nodes.
(Task 1.3) Following the previous task, what are the values of

the edges between the found nodes and the marked nodes?
2. Force-directed graph

(Task 2.1) Find the nearest node to a marked node.
(Task 2.2) Find all nodes connected with two marked nodes.
(Task 2.3) Find the shortest path between two marked nodes.
3. BioLayout graph

(Task 3.1) Find all nodes connected with two marked nodes.
(Task 3.2) How many nodes in a group colored with yellow?
(Task 3.3) Following the previous task, what are the colors of

each of the groups connecting to the yellow group?

19 to 32. Both the gesture and the mouse groups have seven partic-
ipants. Eight of them have computer science background, equally
distributed in the two groups. The others have backgrounds on en-
vironmental engineering, civil engineering, biomedical, chemistry,
economics, and early childhood education.

Procedure. The participants were invited to our laboratory, and
given a pre-experiment survey concerning the questions about pre-
vious knowledge of the VR platforms and computer games. We
separated them into the mouse group and the gesture group accord-
ing to this survey to make the capability of the two groups similar.
Next, we introduced the experiment and gave a tutorial of the system.
The tutorial began with a video illustrating each operation, and then
the participant put on the VR headset and practiced each operation
with a simple graph (Figure 2(d)) until s/he felt skilled enough. After
practicing, each participant needed to take a test where we asked
participants to perform the eight operations in a random order. The
participant was required to pass this test to start the experimental
tasks. The participant was required to finish the current task be-
fore starting the next one. After finishing all tasks, we asked the
participants to fill in a questionnaire about their using experiences.

5 RESULTS

We provide the experimental results in four aspects: accuracy, diffi-
culty of each operation, completion time and user experience.

Difficulty of Operations. Figure 3 shows the difficulty level of
each operation rated by the participants in the questionnaire with
a five-point Likert scale (five means the most difficult). Since the
variables are ordinal and the distribution of the difficulty level of
each operation had heteroscedasticity of variance, we applied the
Brunner-Munzel test [10]. Looking at each operation, the Brunner-

(a) Brain graph (b) Force-directed graph

(c) BioLayout graph (d) The graph for practice

Figure 2: The graphs provided in the user study.

Munzel test revealed the significant differences in following oper-
ations: move a node (p < .009), move an edge (p < .02), rotate a
graph (p < .003), and group (p < .02). The gesture was easier to
move a node, move an edge, and rotate a graph. Conversely, the
mouse was easier for the grouping operation.

Accuracy. We define accuracy rate as the percentage that partic-
ipants were able to give the correct answers on their first answer.
Figure 4 shows the result of accuracy rate through all tasks for each
graph and of each task. Accuracy rate also did not follow a normal
distribution and had heteroscedasticity of variance. Therefore, we
used the Brunner-Munzel test. However, there was no significant
differences in accuracy rate for each graph and each task.

Completion Time. Figure 5 compares the average completion
time for the practice, tasks in each graph, and each individual task.
The practice included a tutorial of the system, practice of the system,
and a simple test. The completion time also did not follow a normal
distribution and had heteroscedasticity of variance. The Brunner-
Munzel test revealed significant differences in the completion time
for the practice (p< .03), the tasks of the BioLayout graph (p< .02),
and the task 3.2 (p < .05). The gesture group spent more time than
the mouse group in the practice task. Conversely, the gesture group
spent less time than the mouse group in the task 3.2 and the tasks of
the BioLayout graph.

43

Authorized licensed use limited to: NAGOYA UNIV. Downloaded on January 05,2021 at 02:49:25 UTC from IEEE Xplore. Restrictions apply.

Figure 1: The gesture set used in our system. Please see also the accompanying video for an illustration of these gestures.

Table 2: The tasks used in user study.

1. Brain graph

(Task 1.1) Find the names of two marked nodes, and the value
of the link connecting them.

(Task 1.2) Find all nodes connected with two marked nodes.
(Task 1.3) Following the previous task, what are the values of
the edges between the found nodes and the marked nodes?

2. Force-directed graph

(Task 2.1) Find the nearest node to a marked node.
(Task 2.2) Find all nodes connected with two marked nodes.
(Task 2.3) Find the shortest path between two marked nodes.
3. BioLayout graph

(Task 3.1) Find all nodes connected with two marked nodes.
(Task 3.2) How many nodes in a group colored with yellow?
(Task 3.3) Following the previous task, what are the colors of
each of the groups connecting to the yellow group?

19 to 32. Both the gesture and the mouse groups have seven partic-
ipants. Eight of them have computer science background, equally
distributed in the two groups. The others have backgrounds on en-
vironmental engineering, civil engineering, biomedical, chemistry,
economics, and early childhood education.

Procedure. The participants were invited to our laboratory, and
given a pre-experiment survey concerning the questions about pre-
vious knowledge of the VR platforms and computer games. We
separated them into the mouse group and the gesture group accord-
ing to this survey to make the capability of the two groups similar.
Next, we introduced the experiment and gave a tutorial of the system.
The tutorial began with a video illustrating each operation, and then
the participant put on the VR headset and practiced each operation
with a simple graph (Figure 2(d)) until s/he felt skilled enough. After
practicing, each participant needed to take a test where we asked
participants to perform the eight operations in a random order. The
participant was required to pass this test to start the experimental
tasks. The participant was required to finish the current task be-
fore starting the next one. After finishing all tasks, we asked the
participants to fill in a questionnaire about their using experiences.

5 RESULTS

We provide the experimental results in four aspects: accuracy, diffi-
culty of each operation, completion time and user experience.

Difficulty of Operations. Figure 3 shows the difficulty level of
each operation rated by the participants in the questionnaire with
a five-point Likert scale (five means the most difficult). Since the
variables are ordinal and the distribution of the difficulty level of
each operation had heteroscedasticity of variance, we applied the
Brunner-Munzel test [10]. Looking at each operation, the Brunner-

(a) Brain graph (b) Force-directed graph

(c) BioLayout graph (d) The graph for practice

Figure 2: The graphs provided in the user study.

Munzel test revealed the significant differences in following oper-
ations: move a node (p < .009), move an edge (p < .02), rotate a
graph (p < .003), and group (p < .02). The gesture was easier to
move a node, move an edge, and rotate a graph. Conversely, the
mouse was easier for the grouping operation.

Accuracy. We define accuracy rate as the percentage that partic-
ipants were able to give the correct answers on their first answer.
Figure 4 shows the result of accuracy rate through all tasks for each
graph and of each task. Accuracy rate also did not follow a normal
distribution and had heteroscedasticity of variance. Therefore, we
used the Brunner-Munzel test. However, there was no significant
differences in accuracy rate for each graph and each task.

Completion Time. Figure 5 compares the average completion
time for the practice, tasks in each graph, and each individual task.
The practice included a tutorial of the system, practice of the system,
and a simple test. The completion time also did not follow a normal
distribution and had heteroscedasticity of variance. The Brunner-
Munzel test revealed significant differences in the completion time
for the practice (p< .03), the tasks of the BioLayout graph (p< .02),
and the task 3.2 (p < .05). The gesture group spent more time than
the mouse group in the practice task. Conversely, the gesture group
spent less time than the mouse group in the task 3.2 and the tasks of
the BioLayout graph.

43

Authorized licensed use limited to: NAGOYA UNIV. Downloaded on January 05,2021 at 02:49:25 UTC from IEEE Xplore. Restrictions apply.

Part of Fig.1 of [24]

FPX-G: our approach

• VR interface for graph exploration
• Related works (such as [24] and [26])

focused on graph visualization and
not on graph exploration.

• Graph database-based data access
• To realize general interface
• Two basic operations for graph

• Expand and Attribute

• Eye-tracking based operations
• Graph drawing: Physical model

Graph Query
Executor Graph DB

Expand-query
Generator

Attribute-query
Generator

Graph Drawer

Input Ops.

expand(!)

Left wink

attribute(!)

Right wink

moveTo(!)

Blink*2
Move

Operation

Operation Processor

VR Interface
initialize(!)

8

• Spring model and electric force by the Coulomb’s law

Operation/Query for Graph DB
• [Op.1] Expand: load (1) neighbor vertices and

 (2) edges between them

• [Op.2] Attribute: load attributes of a vertex

• Here, SPARQL Endpoint is assumed for Graph DB.
• SPARQL Endpoint is a graph DB for RDF data.
• Note that other queries (GraphQL and Cypher) can be used for other graph DBs.

9

• Attribute Operation (attribute : V ! 2A). In this
operation, the argument is a vertex v 2 V , and the result
is a set of attributes of v. Formally, given v 2 V , this
operation finds its attributes.

3.2. ET-based Operations

Before discussing ET-based operations, here, naı̈ve
controller-based operations are introduced. Since the graph
size can be easily large, the universe for the graph drawing in
the virtual space is also large (more than the size of a room),
meaning that, in room-scale VR, users can easily walk into
a wall. One possible approach is to shrink the virtual space
so that users can move throughout the room. However, this
degrades the capability of (the almost infinite) 3D space,
that is, graph drawing in the space becomes denser and thus
reduces the recognizability of individual vertices. Therefore,
this approach is not preferable. To utilize 3D space, FPX-
G provides an operation-based movement in addition to
the capability of walking for room-scale VR. With this
movement, users can move to a vertex by specifying it. One
possible way of specifying vertices is to use a controller-
based approach. Users can point out a vertex with a line
that extends out ahead from a controller device and specify
a vertex by clicking a button on the controller. This is
reasonable for users who are used to VR systems.

As shown in Figure 1(a), there are three operations (i.e.,
expand, attribute, and moveTo), and at least three commands
are needed to be designed. In addition, to enable more
complicated operations (though they are out of scope of this
paper) like filtering vertices with attributes or keywords and
switching the viewpoint between the bird’s-eye view and
the first person view, more commands are required, and the
usability of data exploration system will be degraded due
to the large number of complicated commands. Even hand
gestures [24] suffer from the same problem.

To overcome this problem, hand-based operations are
left for complicated operations, and ET-based operations
are introduced in FPX-G. Eye-tracking is a technique for
recognizing eye motions. It is usable for understanding the
direction a user is looking in and wink/blink motions. For
selecting a vertex, eye directions are more intuitive than
using a controller. To send commands for the vertex being
looked at, instead of using controller, in FPX-G, wink/blink
motions are used, namely a left wink for the expand opera-
tion, a right wink for the attribute operation, and two blinks
for the moveTo operation. The reason for the two blinks is
to distinguish it from the physiological blinks.

3.3. Implementation of the Translation

A translated graph query is dependent on the underlying
graph database, which is the SPARQL endpoint (namely,
Virtuoso) in the prototype FPX-G. The following introduces
the translations into SPARQL queries. Note that the basic
graph pattern in SPARQL is denoted in a triplet ending in
a period (.), and to omit the first element shared from the
previous triplet, semicolon (;) can be used.

• Expand Operation: Given vertex v, E(e)
1 and E(e)

2 are
respectively obtained by the following queries.

E(e)
1

SELECT ?u WHERE {v ?p ?u}

E(e)
2

SELECT ?u1 ?u2
WHERE {v ?p1 ?u1; ?p2 ?u2. ?u1 ?p3 ?u2}

• Initialize Operation: Given vertex v, the union of E(i)
2

and E(i)
3 is obtained by the following query. Since E(i)

1

is equivalent to E(e)
1 , its query is omitted.

E(i)
2 [E(i)

3

SELECT ?s ?d
WHERE { {v ?p1 ?s. ?s ?p2 ?d.}

UNION {v ?p1 ?u1. ?u1 ?p2 ?s; ?p3 ?d.
?s ?p4 ?d.} }

• Attribute Operation: In the SPARQL endpoint which
does not distinguish relationships and attributes, a cri-
terion for the distinction between them is needed. In
this paper, literal vertices directly connected from v are
considered as attributes. To realize this, isLiteral is
used for judging whether a vertex is literal. As a result,
given vertex v, the following query is generated.

SELECT ?p ?o
WHERE {v ?p ?o. FILTER(isLiteral(?o))}

4. Simulation-based Evaluation

An experiment was performed to evaluate FPX-G in
terms of effectiveness and usability. In this experiment,
the question below will be answered: How fast users can
reach a desired vertex from a user-specified source vertex
through graph traversal? The major distinction of FPX-
G from the traditional graph-data exploration is the visible
space (i.e., the 3D space in FPX-G provides and 2D space
in traditional approaches). To understand the effectiveness
of these approaches in terms of this distinction, in this
experiment, a simulation-based evaluation is performed to
observe the expected search costs with these approaches. In
particular, a search cost is defined as the number of edge
traversals from a source vertex to a destination vertex. In
this simulation, two user models are compared: one of the
2D system and the other for the 3D system (i.e., FPX-
G interface). To observe the behaviors of users regarding
topologically different, realistic graph data, three popular
random graph models are used to generate graph data: one
is the perfect m-ary tree model for primitive graphs, another

• Attribute Operation (attribute : V ! 2A). In this
operation, the argument is a vertex v 2 V , and the result
is a set of attributes of v. Formally, given v 2 V , this
operation finds its attributes.

3.2. ET-based Operations

Before discussing ET-based operations, here, naı̈ve
controller-based operations are introduced. Since the graph
size can be easily large, the universe for the graph drawing in
the virtual space is also large (more than the size of a room),
meaning that, in room-scale VR, users can easily walk into
a wall. One possible approach is to shrink the virtual space
so that users can move throughout the room. However, this
degrades the capability of (the almost infinite) 3D space,
that is, graph drawing in the space becomes denser and thus
reduces the recognizability of individual vertices. Therefore,
this approach is not preferable. To utilize 3D space, FPX-
G provides an operation-based movement in addition to
the capability of walking for room-scale VR. With this
movement, users can move to a vertex by specifying it. One
possible way of specifying vertices is to use a controller-
based approach. Users can point out a vertex with a line
that extends out ahead from a controller device and specify
a vertex by clicking a button on the controller. This is
reasonable for users who are used to VR systems.

As shown in Figure 1(a), there are three operations (i.e.,
expand, attribute, and moveTo), and at least three commands
are needed to be designed. In addition, to enable more
complicated operations (though they are out of scope of this
paper) like filtering vertices with attributes or keywords and
switching the viewpoint between the bird’s-eye view and
the first person view, more commands are required, and the
usability of data exploration system will be degraded due
to the large number of complicated commands. Even hand
gestures [24] suffer from the same problem.

To overcome this problem, hand-based operations are
left for complicated operations, and ET-based operations
are introduced in FPX-G. Eye-tracking is a technique for
recognizing eye motions. It is usable for understanding the
direction a user is looking in and wink/blink motions. For
selecting a vertex, eye directions are more intuitive than
using a controller. To send commands for the vertex being
looked at, instead of using controller, in FPX-G, wink/blink
motions are used, namely a left wink for the expand opera-
tion, a right wink for the attribute operation, and two blinks
for the moveTo operation. The reason for the two blinks is
to distinguish it from the physiological blinks.

3.3. Implementation of the Translation

A translated graph query is dependent on the underlying
graph database, which is the SPARQL endpoint (namely,
Virtuoso) in the prototype FPX-G. The following introduces
the translations into SPARQL queries. Note that the basic
graph pattern in SPARQL is denoted in a triplet ending in
a period (.), and to omit the first element shared from the
previous triplet, semicolon (;) can be used.

• Expand Operation: Given vertex v, E(e)
1 and E(e)

2 are
respectively obtained by the following queries.

E(e)
1

SELECT ?u WHERE {v ?p ?u}

E(e)
2

SELECT ?u1 ?u2
WHERE {v ?p1 ?u1; ?p2 ?u2. ?u1 ?p3 ?u2}

• Initialize Operation: Given vertex v, the union of E(i)
2

and E(i)
3 is obtained by the following query. Since E(i)

1

is equivalent to E(e)
1 , its query is omitted.

E(i)
2 [E(i)

3

SELECT ?s ?d
WHERE { {v ?p1 ?s. ?s ?p2 ?d.}

UNION {v ?p1 ?u1. ?u1 ?p2 ?s; ?p3 ?d.
?s ?p4 ?d.} }

• Attribute Operation: In the SPARQL endpoint which
does not distinguish relationships and attributes, a cri-
terion for the distinction between them is needed. In
this paper, literal vertices directly connected from v are
considered as attributes. To realize this, isLiteral is
used for judging whether a vertex is literal. As a result,
given vertex v, the following query is generated.

SELECT ?p ?o
WHERE {v ?p ?o. FILTER(isLiteral(?o))}

4. Simulation-based Evaluation

An experiment was performed to evaluate FPX-G in
terms of effectiveness and usability. In this experiment,
the question below will be answered: How fast users can
reach a desired vertex from a user-specified source vertex
through graph traversal? The major distinction of FPX-
G from the traditional graph-data exploration is the visible
space (i.e., the 3D space in FPX-G provides and 2D space
in traditional approaches). To understand the effectiveness
of these approaches in terms of this distinction, in this
experiment, a simulation-based evaluation is performed to
observe the expected search costs with these approaches. In
particular, a search cost is defined as the number of edge
traversals from a source vertex to a destination vertex. In
this simulation, two user models are compared: one of the
2D system and the other for the 3D system (i.e., FPX-
G interface). To observe the behaviors of users regarding
topologically different, realistic graph data, three popular
random graph models are used to generate graph data: one
is the perfect m-ary tree model for primitive graphs, another

• Attribute Operation (attribute : V ! 2A). In this
operation, the argument is a vertex v 2 V , and the result
is a set of attributes of v. Formally, given v 2 V , this
operation finds its attributes.

3.2. ET-based Operations

Before discussing ET-based operations, here, naı̈ve
controller-based operations are introduced. Since the graph
size can be easily large, the universe for the graph drawing in
the virtual space is also large (more than the size of a room),
meaning that, in room-scale VR, users can easily walk into
a wall. One possible approach is to shrink the virtual space
so that users can move throughout the room. However, this
degrades the capability of (the almost infinite) 3D space,
that is, graph drawing in the space becomes denser and thus
reduces the recognizability of individual vertices. Therefore,
this approach is not preferable. To utilize 3D space, FPX-
G provides an operation-based movement in addition to
the capability of walking for room-scale VR. With this
movement, users can move to a vertex by specifying it. One
possible way of specifying vertices is to use a controller-
based approach. Users can point out a vertex with a line
that extends out ahead from a controller device and specify
a vertex by clicking a button on the controller. This is
reasonable for users who are used to VR systems.

As shown in Figure 1(a), there are three operations (i.e.,
expand, attribute, and moveTo), and at least three commands
are needed to be designed. In addition, to enable more
complicated operations (though they are out of scope of this
paper) like filtering vertices with attributes or keywords and
switching the viewpoint between the bird’s-eye view and
the first person view, more commands are required, and the
usability of data exploration system will be degraded due
to the large number of complicated commands. Even hand
gestures [24] suffer from the same problem.

To overcome this problem, hand-based operations are
left for complicated operations, and ET-based operations
are introduced in FPX-G. Eye-tracking is a technique for
recognizing eye motions. It is usable for understanding the
direction a user is looking in and wink/blink motions. For
selecting a vertex, eye directions are more intuitive than
using a controller. To send commands for the vertex being
looked at, instead of using controller, in FPX-G, wink/blink
motions are used, namely a left wink for the expand opera-
tion, a right wink for the attribute operation, and two blinks
for the moveTo operation. The reason for the two blinks is
to distinguish it from the physiological blinks.

3.3. Implementation of the Translation

A translated graph query is dependent on the underlying
graph database, which is the SPARQL endpoint (namely,
Virtuoso) in the prototype FPX-G. The following introduces
the translations into SPARQL queries. Note that the basic
graph pattern in SPARQL is denoted in a triplet ending in
a period (.), and to omit the first element shared from the
previous triplet, semicolon (;) can be used.

• Expand Operation: Given vertex v, E(e)
1 and E(e)

2 are
respectively obtained by the following queries.

E(e)
1

SELECT ?u WHERE {v ?p ?u}

E(e)
2

SELECT ?u1 ?u2
WHERE {v ?p1 ?u1; ?p2 ?u2. ?u1 ?p3 ?u2}

• Initialize Operation: Given vertex v, the union of E(i)
2

and E(i)
3 is obtained by the following query. Since E(i)

1

is equivalent to E(e)
1 , its query is omitted.

E(i)
2 [E(i)

3

SELECT ?s ?d
WHERE { {v ?p1 ?s. ?s ?p2 ?d.}

UNION {v ?p1 ?u1. ?u1 ?p2 ?s; ?p3 ?d.
?s ?p4 ?d.} }

• Attribute Operation: In the SPARQL endpoint which
does not distinguish relationships and attributes, a cri-
terion for the distinction between them is needed. In
this paper, literal vertices directly connected from v are
considered as attributes. To realize this, isLiteral is
used for judging whether a vertex is literal. As a result,
given vertex v, the following query is generated.

SELECT ?p ?o
WHERE {v ?p ?o. FILTER(isLiteral(?o))}

4. Simulation-based Evaluation

An experiment was performed to evaluate FPX-G in
terms of effectiveness and usability. In this experiment,
the question below will be answered: How fast users can
reach a desired vertex from a user-specified source vertex
through graph traversal? The major distinction of FPX-
G from the traditional graph-data exploration is the visible
space (i.e., the 3D space in FPX-G provides and 2D space
in traditional approaches). To understand the effectiveness
of these approaches in terms of this distinction, in this
experiment, a simulation-based evaluation is performed to
observe the expected search costs with these approaches. In
particular, a search cost is defined as the number of edge
traversals from a source vertex to a destination vertex. In
this simulation, two user models are compared: one of the
2D system and the other for the 3D system (i.e., FPX-
G interface). To observe the behaviors of users regarding
topologically different, realistic graph data, three popular
random graph models are used to generate graph data: one
is the perfect m-ary tree model for primitive graphs, another

Graph Query
Executor Graph DB

Expand-query
Generator

Attribute-query
Generator

Graph Drawer

Input Ops.

expand(!)

Left wink

attribute(!)

Right wink

moveTo(!)

Blink*2
Move

Operation

Operation Processor

VR Interface
initialize(!)

User Interface

• Motivation for eye tracking-based operation
• To realize hand-free operations
• Hands should be used for more complicated operations.

• Keyboard inputs
• Hand gestures proposed in [24]

• Shift, highlight, rotate, and group

• Current implementation uses HTC VIVE Pro Eye and Unity.

10
Graph Query

Executor Graph DB

Expand-query
Generator

Attribute-query
Generator

Graph Drawer

Input Ops.

expand(!)

Left wink

attribute(!)

Right wink

moveTo(!)

Blink*2
Move

Operation

Operation Processor

VR Interface
initialize(!)

Operations Controller Eye-tracking
Vertex selection Pointing Gaze
Expand Left hand Trigger Left wink
Attribute Right hand Trigger Right wink
Move Both hand Trigger Blink*2

Trigger

image from https://www.vive.com/eu/
support/vive-pro-eye/category_howto/
about-the-controllers---2018.html

[24] Y. Huang, et al., “A Gesture System for Graph Visualization in Virtual Reality Environments,” in PacificVis17, 2017, pp. 41–45.

System view (Overview and Gaze)

11

Attribute and Expand Operations 12

Right
wink

Left
wink

Attribute
Operation

Expand
Operation

Simulation-based Evaluation
• Question: How fast users can reach a desired vertex from a user-specified

starting vertex through graph exploration?
• Users are assumed to have no idea about the desired vertex until they reach to it.

• Evaluation metrics: the number of vertices visited during an exploration
from the starting vertex to the destination vertex.
• Sum over randomly selected 1,000 starting-destination vertex pairs.

• Comparison: FPX-G and a browsing approach
• Graph data (synthetic): 200 vertices

• Perfect 𝑚-ary tree (𝑚 = 5 in this experiment)
• Watts-Strogatz graph (small-world property)

• Short average path length, high clustering coefficient.
• Barabasi-Albert graph (scale-free property)

• Degree distribution follows the power law.

13

User models
• User model in the browsing approach (2D user model)

• Random surfer model
• Randomly access to neighbor vertices and occasionally go back to the source vertex.

• User model in FPX-G (3D user model)
• Basic idea: randomly access to visible vertices
• User preference

• Some users prefer to access near vertices
• Some users prefer to access far vertices

èThis is captured by an exponential distribution.

 𝑓 𝑥, 𝜆 = (𝜆𝑒
!"#, 𝑥 ≥ 0

	 0, 𝑥 < 0
 where λ > 0 is a parameter for the user preference for distance.

• Higher 𝜆, the more users prefer closer vertices.

14

𝑓
𝑥,
𝜆

Result on
Watts-Strogatz graph
• The larger distance from source

to destination (large Dist), the
larger gap between 2D and 3D
user models.
• Users prefer further distance

(small 𝜆) can reach to the
destination vertex faster.
• In denser graph (large k),

the 3D user model is superior to
the 2D user model.

15

• Dist means the distance from source to destination vertices.
• k is the mean degree parameter of Watts-Strogatz model.
• AP means awareness prob. that users notice the destination.

Conclusion
• Summary

• FPX-G: Graph exploration using VR technology
• Users can see vertices in several hops away from the visited vertices.
• Demo video: https://vimeo.com/512228512

• Simulation-based evaluation shows its superiority to the traditional approach (i.e.,
browsing approach).

• Future direction
• User study (maybe after the current situation of COVID-19)
• Improvements

• Graph drawing in VR space
• Interactive exploration: filtering operation during exploration
• Other input methods for more advanced operations

16

Results

17

Barabasi-Albert graph Watts-Strogatz graph

Perfect 5-ary tree

