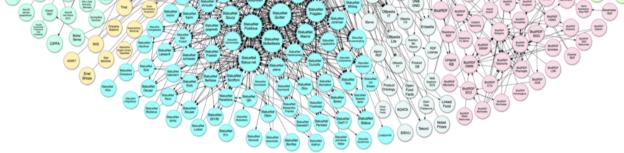

Interleaving Clustering of Classes and Properties for Disambiguating Linked Data

Takahiro Komamizu, Toshiyuki Amagasa, Hiroyuki Kitagawa (University of Tsukuba, Japan)

Linked Data

Link together and Open to public



Ambiguity Problem

Class ambiguity

- Similar classes with different URIs
- e.g., foaf:Person and dbo:Person

Property ambiguity

*Image from http://lod-cloud.net/ select ?movie
where{
 ?movie rdf:type dbo;

?movie rdf:type dbo:Film; dbp:starring dbr:Johnny_Depp.

SPARQL

- Similar properties with different URIs
- e.g., dbp:starring and dbo:starring

Inappropriate SPARQL queries for users
Undesired burden on adding new entities

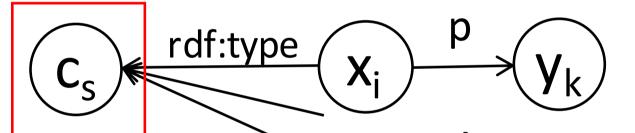
Proposed Approach: CPClustering

Basic idea: clustering onto classes and properties **Concerns**: feature spaces for classes and properties & clustering algorithm

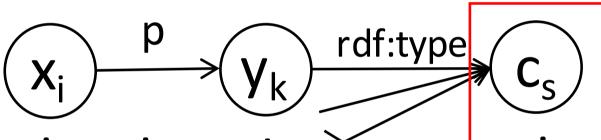
Feature Space: Class

Internal Property Representation

Xi


External Property Representation

y_k


rdf:type

Feature Space: Property

Source Class Representation

Destination Class Representation

Xi

<u>Algorithm</u>

rdf:type

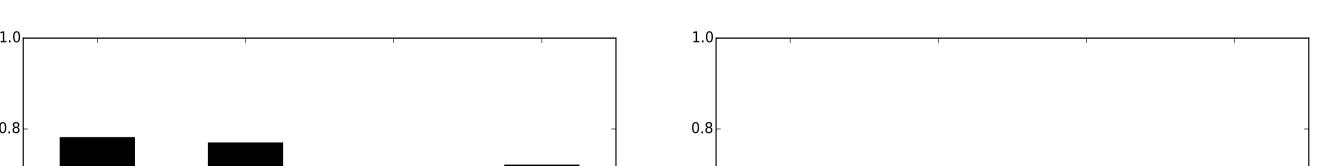
Algorithm 1 CPClustering algorithm.

Input: Classes $C^{(0)}$, Properties $P^{(0)}$ Output: Clusterings $C^{(*)}$, $P^{(*)}$
1: $t \leftarrow 0$
2: while $(C^{(t-1)} \neq C^{(t)} \text{ and } P^{(t-1)} \neq P^{(t)}) \text{ or } t = 0$ do
3: $C^{(t+1)} \leftarrow clustering(C^{(t)})$
4: $P^{(t)} \leftarrow update(P^{(t)}, C^{(t+1)})$
5: $P^{(t+1)} \leftarrow clustering(P^{(t)})$
6: $C^{(t+1)} \leftarrow update(C^{(t+1)}, P^{(t+1)})$
7: $t \leftarrow t + 1$
8: end while
9: $C^{(*)} \leftarrow C^{(t)}, P^{(*)} \leftarrow P^{(t)}$

(a) Class clusterings.							
	IPR & SCR	IPR & DCR	EPR & SCR	EPR & DCR			
IPR & SCR	_	0.30679	0.51389	0.26819			
IPR & DCR	0.30679	_	0.31785	0.25950			
EPR & SCR	0.51389	0.31785	_	0.27820			

Experimental Evaluation

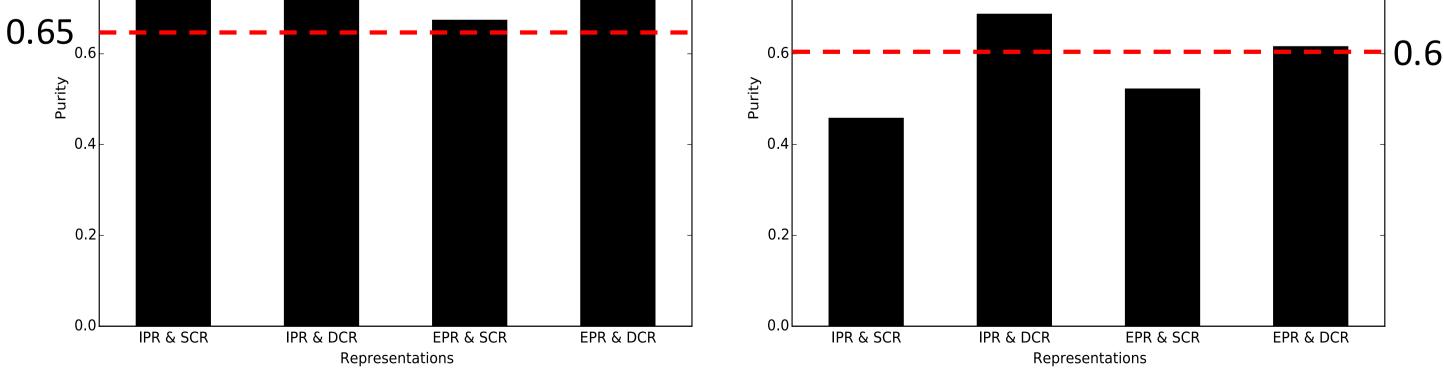
Purpose


C_t

- Evaluate clustering effectiveness.
- Observe differences b/w representations.

Xi

- Measurements
 - Purity (Labels are manually associated)
 - Adjusted Rand Index (ARI)


Dataset: DBpedia

EPR & DCR	0.26819	0.25950	0.27820	

(b) Property clusterings.

	IPR & SCR	IPR & DCR	EPR & SCR	EPR & DCR
IPR & SCR	-	0.23138	0.14902	0.24907
IPR & DCR	0.23138	_	0.03130	0.81658
EPR & SCR	0.14902	0.03130	-	0.02909
EPR & DCR	0.24907	0.81658	0.02909	-

ARI among clustering w.r.t. rep.

Future Work

Generalize the clustering

> Revisit these representations in other aspects (e.g., probability theory)