Interleaving Clustering of Classes and Properties for Disambiguating Linked Data

<u>Takahiro Komamizu</u>, Toshiyuki Amagasa, Hiroyuki Kitagawa University of Tsukuba

Linked Data

- Linked Data (or LD, a.k.a. Web of data)
 - Link together
 - Open to public
 - Large number of datasets (more than 1,000 in 2014)

Querying via SPARQL

• SPARQL is a standardized query language for LD.

```
select ?movie
where{
    ?movie rdf:type dbo:Film;
    dbp:starring dbr:Johnny_Depp.
}
```

movie					
http://dbpedia.org/resource/Blow_(film)					
http://dbpedia.org/resource/Sweeney_Todd: The_Demon_Barber_of_Fleet_Street_(2007_film)					
http://dbpedia.org/resource/Alice_Through_the_Looking_Glass_(film)					
http://dbpedia.org/resource/Charlie_and_the_Chocolate_Factory_(film)					
http://dbpedia.org/resource/Tusk_(2014_film)					
http://dbpedia.org/resource/Chocolat_(2000_film)					
http://dbpedia.org/resource/The_Tourist_(2010_film)					
http://dbpedia.org/resource/Once_Upon_a_Time_in_Mexico					
http://dbpedia.org/resource/Donald_Trump's_The_Art_of_the_Deal:_The_Movie					

<u>SPARQL</u>

Graph representation

3

Ambiguities on Linked Data

- Class ambiguity
 - Similar classes with different URIs
 - e.g., foaf:Person and dbo:Person
- Property ambiguity
 - Similar properties with different URIs
 - e.g., dbp:starring and dbo:starring

These ambiguities cause

- inappropriate SPARQL queries for users
- undesired burden on adding new entities

Disambiguation with Clustering

- Clustering makes groups of similar items.
- Apply clustering onto classes and properties.
 - Expectation
 - Ambiguous classes/properties compose groups.

Concerns

- feature spaces for classes and properties
- clustering algorithm

Feature Spaces: Class

- Classes are represented by relevant properties.
- Representations (Bag of words)
 - Internal Property Representation (IPR)
 - A class is represented by properties connected from instances of the class.

- External Property Representation (EPR)
 - A class is represented by properties connecting to instances of the class.

Feature Spaces: Property

- Properties are represented by relevant classes.
- Representations (Bag of words)
 - Source Class Representation (SCR)
 - A property is represented by classes which instances are subject of triples containing the property.

Destination Class Representation (DCR)

 A property is represented by classes which instances are object of triples containing the property.

Interleaving Clustering: CPClustering

- As a result of the representations, clustering on classes affects properties, and vice versa.
- When classes (properties) are clustered, representations of properties (classes) are updated.

```
Algorithm 1 CPClustering algorithm.
```

```
Input: Classes C^{(0)}, Properties P^{(0)}

Output: Clusterings C^{(*)}, P^{(*)}

1: t \leftarrow 0

2: while (C^{(t-1)} \neq C^{(t)} \text{ and } P^{(t-1)} \neq P^{(t)}) or t = 0 do

3: C^{(t+1)} \leftarrow clustering(C^{(t)})

4: P^{(t)} \leftarrow update(P^{(t)}, C^{(t+1)})

5: P^{(t+1)} \leftarrow clustering(P^{(t)})

6: C^{(t+1)} \leftarrow update(C^{(t+1)}, P^{(t+1)})

7: t \leftarrow t + 1

8: end while

9: C^{(*)} \leftarrow C^{(t)}, P^{(*)} \leftarrow P^{(t)}
```

clustering

- Vector space model based similarity
 - e.g., cosine sim.
- General clustering algo.
 - e.g., k-means, DBSCAN

Experimental Evaluation

- Purpose
 - Evaluate clustering effectiveness.
 - Comparing clustering results among representations.
- Measurements
 - Purity of clusterings
 - Average on max num of same labels in each cluster
 - Labels of classes and properties are manually associated.
 - Adjusted Rand Index (ARI) between clusterings
 - ARI scores how much of item pairs are in same/different clusters.
- Dataset: classes and properties in DBpedia

Experimental Results: Purity

- Classes are well-clustered for all rep.
- Properties are well-clustered for DCR rep.

10

Experimental Results: ARI

(a) Class clusterings.

	IPR & SCR	IPR & DCR	EPR & SCR	EPR & DCR
IPR & SCR	-	0.30679	0.51389	0.26819
IPR & DCR	0.30679	-	0.31785	0.25950
EPR & SCR	0.51389	0.31785	-	0.27820
EPR & DCR	0.26819	0.25950	0.27820	-

(b) Property clusterings.

	IPR & SCR	IPR & DCR	EPR & SCR	EPR & DCR
IPR & SCR	-	0.23138	0.14902	0.24907
IPR & DCR	0.23138	-	0.03130	0.81658
EPR & SCR	0.14902	0.03130	-	0.02909
EPR & DCR	0.24907	0.81658	0.02909	-

- Clusters of classes are not much overlapping.
- Clusters of properties are overlapping when DCR rep., while not overlapping when SCR rep.

Still space left for improving clustering by combining these rep.

Conclusion and Future work

- CPClustering
 - Interleaving clustering of classes and properties
 - Classes (resp. properties) are represented by properties (resp. classes) in two points of views: IPR and EPR (resp. SCR and DCR)
 - Evaluation introduces reasonable purity and possibilities for combining these representations.
- Future work
 - Generalize the clustering
 - Revisit these representations in other aspects (e.g., probability theory)

Thank you for your kind attentions.