Implicit Order Join:
Joining Log Data with Property Data by
Discovering Implicit Order-oriented Keys
with Human Assistance

Takahiro Komamizu, Toshiyuki Amagasa,
Hiroyuki Kitagawa
University of Tsukuba
Japan
Data Integration

• Fundamental task for data analysis
• Combining data from multiple sources
Missing Key Problem

- Inconsistency of data

\[
\begin{array}{|c|c|c|}
\hline
\text{Car} & \text{Weight} & \text{Time} \\
\hline
A & 100 & 4/1/17 10:00 \\
B & 150 & 4/1/17 11:00 \\
C & 120 & 4/1/17 12:00 \\
A & 200 & 4/1/17 13:00 \\
B & 180 & 4/1/17 14:00 \\
C & 110 & 4/1/17 15:00 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
\text{Car} & \text{Course} & \text{Area} \\
\hline
A & A-1 & D1 \\
A & A-2 & D2 \\
B & B-1 & D3 \\
B & B-2 & D1 \\
C & C-1 & D2 \\
C & C-2 & D3 \\
\hline
\end{array}
\]

\[R \bowtie \{\text{Car}=\text{Car}\} \]

- **Expected join results**
- **Unexpected join results**
Formal Definition

Definition 1 (Missing Key Problem): Given relations \(R, S \), join condition \(J \) and expected join results \(U^* \), no query over \(R \bowtie_J S \) provides \(U^* \), and there is no auxiliary relation which enables to join \(R \) and \(S \) to provide \(U^* \). \(\square \)

\[
\begin{array}{|c|c|c|}
\hline
\text{Car} & \text{Weight} & \text{Time} \\
\hline
A & 100 & 4/1/17 10:00 \\
B & 150 & 4/1/17 11:00 \\
C & 120 & 4/1/17 12:00 \\
A & 200 & 4/1/17 13:00 \\
B & 180 & 4/1/17 14:00 \\
C & 110 & 4/1/17 15:00 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
\text{Car} & \text{Course} & \text{Area} \\
\hline
A & A-1 & D1 \\
A & A-2 & D2 \\
B & B-1 & D3 \\
B & B-2 & D1 \\
C & C-1 & D2 \\
C & C-2 & D3 \\
\hline
\end{array}
\]
Trouble from Missing Key Prob.

• Joined results include large number of unnecessary tuples.

• To use the results for applications, (automatic/manual) data cleansing is required.

An example situation

About 3/4 are unnecessary
Objective: Implicit Key Discovery

Expected

\[R^+ \]
\[S^+ \]
\[\langle \text{Car} = \text{Car} \rangle \]
\[\land x = y \]

\[
\begin{array}{|c|c|c|c|}
\hline
x & \text{Car} & \text{Weight} & \text{Time} \\
\hline
1 & A & 100 & 4/17 10:00 \\
1 & B & 150 & 4/17 11:00 \\
1 & C & 120 & 4/17 12:00 \\
2 & A & 200 & 4/17 13:00 \\
2 & B & 180 & 4/17 14:00 \\
2 & C & 110 & 4/17 15:00 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Car} & \text{Course} & \text{Area} & y \\
\hline
A & A-1 & D1 & 1 \\
A & A-2 & D2 & 2 \\
B & B-1 & D3 & 1 \\
B & B-2 & D1 & 2 \\
C & C-1 & D2 & 1 \\
C & C-2 & D3 & 2 \\
\hline
\end{array}
\]

Implicit keys

Costs

Expected

Joined
Observation: Order-oriented Correlation

- Assumed real-world situation: Joining log records with supplemental information
 - e.g., garbage collection logs and collecting routes of garbage cars

<table>
<thead>
<tr>
<th>Car</th>
<th>Weight</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
<td>4/1/17 10:00</td>
</tr>
<tr>
<td>B</td>
<td>150</td>
<td>4/1/17 11:00</td>
</tr>
<tr>
<td>C</td>
<td>120</td>
<td>4/1/17 12:00</td>
</tr>
<tr>
<td>A</td>
<td>200</td>
<td>4/1/17 13:00</td>
</tr>
<tr>
<td>B</td>
<td>180</td>
<td>4/1/17 14:00</td>
</tr>
<tr>
<td>C</td>
<td>110</td>
<td>4/1/17 15:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Car</th>
<th>Course</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A-1</td>
<td>D1</td>
</tr>
<tr>
<td>A</td>
<td>A-2</td>
<td>D2</td>
</tr>
<tr>
<td>B</td>
<td>B-1</td>
<td>D3</td>
</tr>
<tr>
<td>B</td>
<td>B-2</td>
<td>D1</td>
</tr>
<tr>
<td>C</td>
<td>C-1</td>
<td>D2</td>
</tr>
<tr>
<td>C</td>
<td>C-2</td>
<td>D3</td>
</tr>
</tbody>
</table>
Observation: Order-oriented Correlation

- Order-oriented correlation: an order of records in log data is corresponding with the supplemental information.

<table>
<thead>
<tr>
<th>Car</th>
<th>Weight</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
<td>4/1/17 10:00</td>
</tr>
<tr>
<td>B</td>
<td>150</td>
<td>4/1/17 11:00</td>
</tr>
<tr>
<td>C</td>
<td>120</td>
<td>4/1/17 12:00</td>
</tr>
<tr>
<td>A</td>
<td>200</td>
<td>4/1/17 13:00</td>
</tr>
<tr>
<td>B</td>
<td>180</td>
<td>4/1/17 14:00</td>
</tr>
<tr>
<td>C</td>
<td>110</td>
<td>4/1/17 15:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Car</th>
<th>Course</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A-1</td>
<td>D1</td>
</tr>
<tr>
<td>A</td>
<td>A-2</td>
<td>D2</td>
</tr>
<tr>
<td>B</td>
<td>B-1</td>
<td>D3</td>
</tr>
<tr>
<td>B</td>
<td>B-2</td>
<td>D1</td>
</tr>
<tr>
<td>C</td>
<td>C-1</td>
<td>D2</td>
</tr>
<tr>
<td>C</td>
<td>C-2</td>
<td>D3</td>
</tr>
</tbody>
</table>
Tackling Issue

- Discovery of attribute set pair with order-oriented correlation with help of human judged samples.

Human judged samples

Order-oriented correlation

<table>
<thead>
<tr>
<th>Car</th>
<th>Weight</th>
<th>Time</th>
<th>Car</th>
<th>Course</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
<td>4/1/17 10:00</td>
<td>A</td>
<td>A-1</td>
<td>D1</td>
</tr>
<tr>
<td>B</td>
<td>150</td>
<td>4/1/17 11:00</td>
<td>A</td>
<td>A-2</td>
<td>D2</td>
</tr>
<tr>
<td>C</td>
<td>120</td>
<td>4/1/17 12:00</td>
<td>B</td>
<td>B-1</td>
<td>D3</td>
</tr>
<tr>
<td>A</td>
<td>200</td>
<td>4/1/17 13:00</td>
<td>B</td>
<td>B-2</td>
<td>D1</td>
</tr>
<tr>
<td>B</td>
<td>180</td>
<td>4/1/17 14:00</td>
<td>C</td>
<td>C-1</td>
<td>D2</td>
</tr>
<tr>
<td>C</td>
<td>110</td>
<td>4/1/17 15:00</td>
<td>C</td>
<td>C-2</td>
<td>D3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Car</th>
<th>Weight</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
<td>4/1/17 10:00</td>
</tr>
<tr>
<td>B</td>
<td>150</td>
<td>4/1/17 11:00</td>
</tr>
<tr>
<td>C</td>
<td>120</td>
<td>4/1/17 12:00</td>
</tr>
<tr>
<td>A</td>
<td>200</td>
<td>4/1/17 13:00</td>
</tr>
<tr>
<td>B</td>
<td>180</td>
<td>4/1/17 14:00</td>
</tr>
<tr>
<td>C</td>
<td>110</td>
<td>4/1/17 15:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Car</th>
<th>Course</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A-1</td>
<td>D1</td>
</tr>
<tr>
<td>A</td>
<td>A-2</td>
<td>D2</td>
</tr>
<tr>
<td>B</td>
<td>B-1</td>
<td>D3</td>
</tr>
<tr>
<td>A</td>
<td>B-2</td>
<td>D1</td>
</tr>
<tr>
<td>B</td>
<td>C-1</td>
<td>D2</td>
</tr>
<tr>
<td>C</td>
<td>C-2</td>
<td>D3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Car</th>
<th>Course</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A-1</td>
<td>D1</td>
</tr>
<tr>
<td>A</td>
<td>A-2</td>
<td>D2</td>
</tr>
<tr>
<td>B</td>
<td>B-1</td>
<td>D3</td>
</tr>
<tr>
<td>B</td>
<td>B-2</td>
<td>D1</td>
</tr>
<tr>
<td>C</td>
<td>C-1</td>
<td>D2</td>
</tr>
<tr>
<td>C</td>
<td>C-2</td>
<td>D3</td>
</tr>
</tbody>
</table>
Implicit Order Join Framework

1. Discover order-oriented attribute pair.
2. Generate complemental attributes.
3. Arrange relations and join conditions.
4. Perform join operation.
Combinatorial Problem

- Tremendous number of candidates of attribute set pairs.

\[O(N_R!N_S!) \]

- where \(N_R \) (or \(N_S \)) are the number of attributes of relation \(R \) (resp. \(S \)).

- \(N_X! \) is the number of enumerations of attributes in relation \(X \).

- Taking subsequences into account, the number of each enumeration becomes

\[\sum_{i=1}^{N} \binom{N}{i} i! \]
Pruning of Candidates

• Idea: a sequence of attribute gives deterministic ordering of records, super-sequences of it give the same ordering.

 • e.g., if (r1, r2) \(\Rightarrow\) (d1, d2, d3),
 then (r1, r2, r3) \(\Rightarrow\) (d1, d2, d3)

• Strategy

 • Bottom-up traversal
 • Stopping enumeration by the idea.
Bottom-up Traversal

- Relation R has three attributes r1, r2 and r3.
- Traversal starts from empty and add attribute one by one.
Pruning

When at tail, deterministic ordering too.

Deterministic ordering

Stop traversal
Experimental Evaluation

• Objective
 1. Check effectiveness of the implicit order join.
 2. Check efficiency of the pruning.

• Datasets
 1. Real-world data from Fujisawa city, Japan.
 • Garbage collection logs and routing info.
 2. Synthetic data*
 • Tunable parameters
 • #attributes: total number of attributes
 • #oo-attributes: size of order-oriented attribute set

*https://github.com/Taka-Coma/OOJBench
Implicit Order Join is Effective.

- 77% reduction of joined results.
-Carefully checked by human judges that the results are correct.
Efficiently prune for large #attrs.

Processing time in logarithmic scale

- The larger #attrs, the more #candidates in enumeration.
- Pruning effects big reduction of #candidates esp. when #attrs is large.

Baselines
- all: enumeration of subsequences of attributes
- longest: enumeration of all attributes
#oo-attrs affects performance.

Processing time in logarithmic scale

- The larger #oo-attrs, the more processing time.
- Still far better than baselines.

Baselines
- all: enumeration of subsequences of attributes
- longest: enumeration of all attributes
Conclusion and Future Work

• Conclusion
 • Definition: Missing key problem
 • Proposal: Implicit order join framework
 • Order-oriented correlation assumption
 • Experiment: Effectiveness and Efficiency

• Future Work
 • General approach for implicit join
 • Removal of the assumption