
Implicit Order Join: Joining Log Data with Property Data by Discovering Implicit Order-oriented Keys with Human Assistance

<u>Takahiro Komamizu</u>, Toshiyuki Amagasa, Hiroyuki Kitagawa University of Tsukuba Japan

Data Integration

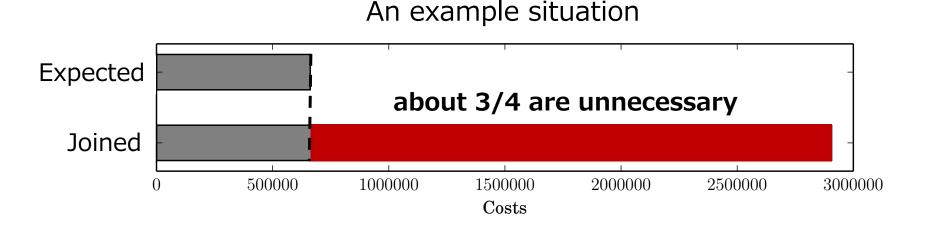
- Fundamental task for data analysis
- Combining data from multiple sources

Missing Key Problem

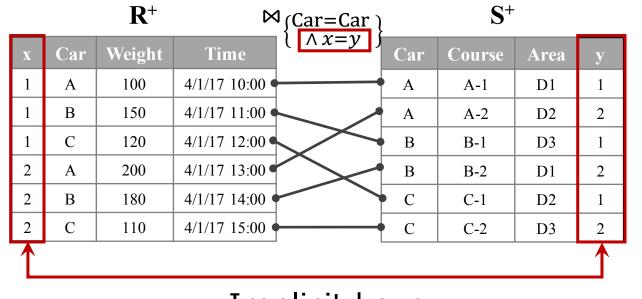
Inconsistency of data

	R		⊠{Car=Car}		S	
Car	Weight	Time		Car	Course	Area
Α	100	4/1/17 10:00		A	A-1	D1
В	150	4/1/17 11:00		A	A-2	D2
C	120	4/1/17 12:00		B	B-1	D3
Α	200	4/1/17 13:00		B	B-2	D1
В	180	4/1/17 14:00		C	C-1	D2
C	110	4/1/17 15:00		C	C-2	D3

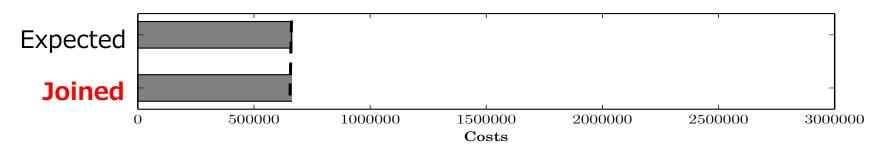
Expected join resultsUnexpected join results


Formal Definition

Definition 1 (Missing Key Problem): Given relations R, S, join condition J and expected join results U^* , no query over $R \bowtie_J S$ provides U^* , and there is no auxiliary relation which enables to join R and S to provide U^* . \Box


_	R		⊠{Car=Car}		S	
Car	Weight	Time		Car	Course	Area
Α	100	4/1/17 10:00	/	Α	A-1	D1
В	150	4/1/17 11:00	77	A	A-2	D2
C	120	4/1/17 12:00		В	B-1	D3
Α	200	4/1/17 13:00		В	B-2	D1
В	180	4/1/17 14:00		C	C-1	D2
C	110	4/1/17 15:00		C	C-2	D3

Trouble from Missing Key Prob.


- Joined results include large number of unnecessary tuples.
- To use the results for applications, (automatic/manual) data cleansing is required.

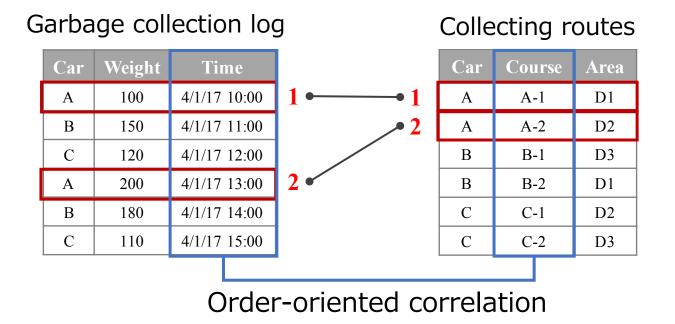
Objective: Implicit Key Discovery

Implicit keys

Observation: Order-oriented Correlation

- Assumed real-world situation: Joining log records with supplemental information
 - e.g., garbage collection logs and colleting routes of garbage cars

Garbage collection log


Car	Weight	Time
Α	100	4/1/17 10:00
В	150	4/1/17 11:00
C	120	4/1/17 12:00
Α	200	4/1/17 13:00
В	180	4/1/17 14:00
C	110	4/1/17 15:00

Collecting routes in a day

Car	Course	Area
Α	A-1	D1
Α	A-2	D2
В	B-1	D3
В	B-2	D1
C	C-1	D2
С	C-2	D3

Observation: Order-oriented Correlation

• Order-oriented correlation: an order of records in log data is corresponding with the of supplemental information.

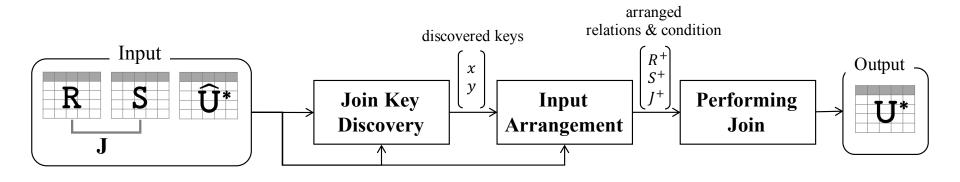
Tackling Issue

 Discovery of attribute set pair with order-oriented correlation with help of human judged samples

Car	Weight	Time	Car	Course	Area
Α	100	4/1/17 10:00	А	A-1	D1
В	150	4/1/17 11:00	А	A-2	D2
C	120	4/1/17 12:00	В	B-1	D3
A	200	4/1/17 13:00	В	B-2	D1
В	180	4/1/17 14:00	С	C-1	D2
C	110	4/1/17 15:00	С	C-2	D3

Û*

Car	Weight	Time	Car	Course	Area
А	100	4/1/17 10:00	А	A-1	D1
В	150	4/1/17 11:00	А	A-2	D2
С	120	4/1/17 12:00	В	B-1	D3
А	200	4/1/17 13:00	В	B-2	D1
В	180	4/1/17 14:00	С	C-1	D2
С	110	4/1/17 15:00	C	C-2	D3
	-				


R

Human judged samples

Order-oriented correlation

S

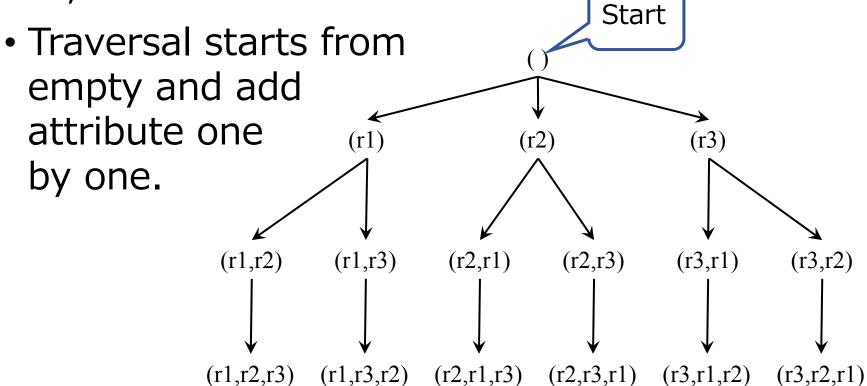
Implicit Order Join Framework

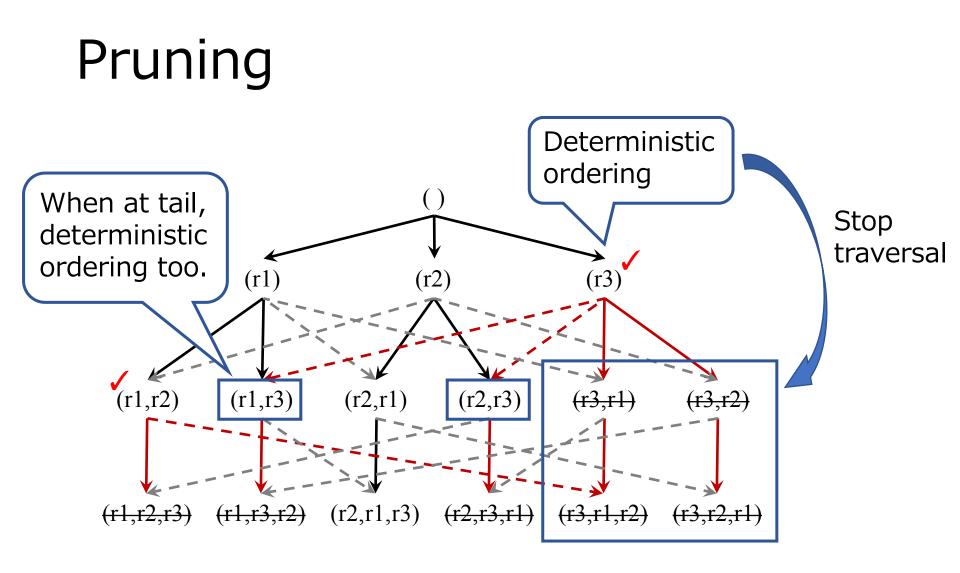
- 1. Discover order-oriented attribute pair.
- 2. Generate complemental attributes.
- 3. Arrange relations and join conditions.
- 4. Perform join operation.

Combinatorial Problem

• Tremendous number of candidates of attribute set pairs.

 $\mathcal{O}(N_R!N_S!)$

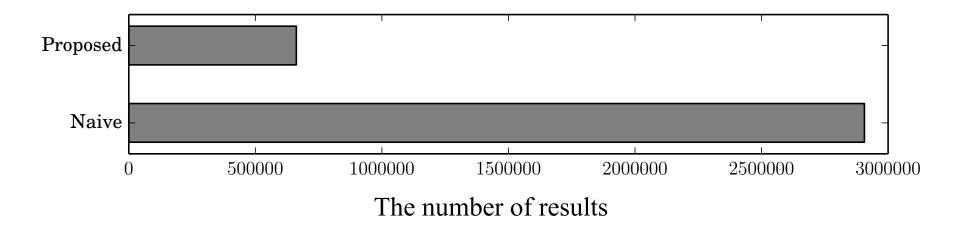

- where N_R (or N_S) are the number of attributes of relation R (resp. S).
- N_X ! is the number of enumerations of attributes in relation X.
- Taking subsequences into account, the number of each enumeration becomes $\sum_{i=1}^{N} {N \choose i} i!$


Pruning of Candidates

- Idea: a sequence of attribute gives deterministic ordering of records, supersequences of it give the same ordering.
 - e.g., if (r1, r2) → (d1, d2, d3), then (r1, r2, r3) → (d1, d2, d3)
- Strategy
 - Bottom-up traversal
 - Stopping enumeration by the idea.

Bottom-up Traversal

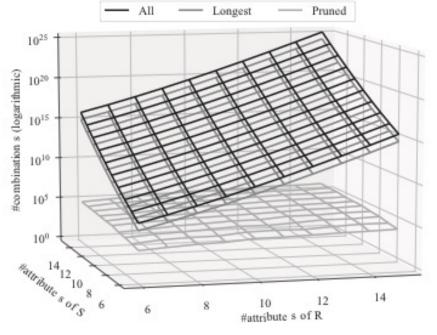
• Relation R has three attributes r1, r2 and r3.


Experimental Evaluation

Objective

- 1. Check effectiveness of the implicit order join.
- 2. Check efficiency of the pruning.
- Datasets
 - 1. Real-world data from Fujisawa city, Japan.
 - Garbage collection logs and routing info.
 - 2. Synthetic data*
 - Tunable parameters
 - #attributes: total number of attributes
 - #oo-attributes: size of order-oriented attribute set

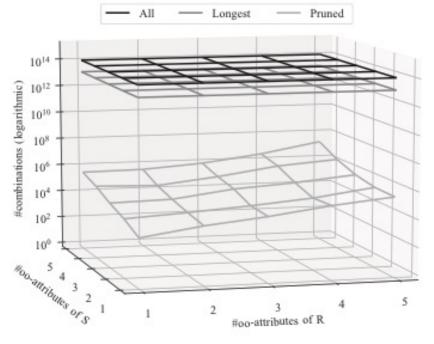
*https://github.com/Taka-Coma/OOJBench


Implicit Order Join is Effective.

- 77% reduction of joined results.
- Carefully checked by human judges that the results are correct.

Efficiently prune for large #attrs.

Processing time in logarithmic scale



- The larger #attrs, the more #candidates in enumeration.
- Pruning effects big reduction of #candidates esp. when #attrs is large.

- Baselines
 - all: enumeration of subsequences of attributes
 - longest: enumeration of all attributes

#oo-attrs affects performance.

Processing time in logarithmic scale

- The larger #oo-attrs, the more processing time.
- Still far better than baselines.

- Baselines
 - all: enumeration of subsequences of attributes
 - longest: enumeration of all attributes

Conclusion and Future Work

Conclusion

- Definition: Missing key problem
- Proposal: Implicit order join framework
 - Order-oriented correlation assumption
- Experiment: Effectiveness and Efficiency
- Future Work
 - General approach for implicit join
 - Removal of the assumption