
Implicit Order Join:
Joining Log Data with Property Data by
Discovering Implicit Order-oriented Keys
with Human Assistance

Takahiro Komamizu, Toshiyuki Amagasa,
Hiroyuki Kitagawa

University of Tsukuba
Japan

Data Integration

• Fundamental task for data analysis
• Combining data from multiple sources

Data

Data

Data
Data

Data
Integration

App

App

App

App

Missing Key Problem

• Inconsistency of data
R

Car Course Area

A A-1 D1

A A-2 D2

B B-1 D3

B B-2 D1

C C-1 D2

C C-2 D3

S
Car Weight Time

A 100 4/1/17 10:00

B 150 4/1/17 11:00

C 120 4/1/17 12:00

A 200 4/1/17 13:00

B 180 4/1/17 14:00

C 110 4/1/17 15:00

⋈ Car=Car

Expected join results
Unexpected join results

Formal Definition

R
Car Course Area

A A-1 D1

A A-2 D2

B B-1 D3

B B-2 D1

C C-1 D2

C C-2 D3

S
Car Weight Time

A 100 4/1/17 10:00

B 150 4/1/17 11:00

C 120 4/1/17 12:00

A 200 4/1/17 13:00

B 180 4/1/17 14:00

C 110 4/1/17 15:00

⋈ Car=Car

(a) Obedient join.

Car Weight Time Car Course Area

A 100 4/1/17 10:00 A A-1 D1

B 150 4/1/17 11:00 A A-2 D2

C 120 4/1/17 12:00 B B-1 D3

A 200 4/1/17 13:00 B B-2 D1

B 180 4/1/17 14:00 C C-1 D2

C 110 4/1/17 15:00 C C-2 D3

U*

(b) Expected join result.

R+

Car Course Area y

A A-1 D1 1

A A-2 D2 2

B B-1 D3 1

B B-2 D1 2

C C-1 D2 1

C C-2 D3 2

S+

x Car Weight Time

1 A 100 4/1/17 10:00

1 B 150 4/1/17 11:00

1 C 120 4/1/17 12:00

2 A 200 4/1/17 13:00

2 B 180 4/1/17 14:00

2 C 110 4/1/17 15:00

⋈ Car=Car	
∧	()*

rank of Timewithin Car values rank of Course within Car values

(c) Implicit order join.

Figure 1: Illustrative example of implicit order join. (a) displays join R and S obedient to the input join condition. Solid
lines are expected matching while dashed lines are unexpected. (b) shows the expected join result. (c) draws the implicit
order join achieves the expected join. Implicit order join discovers implicit order-oriented join key x and y from U⇤, and
joins expectedly with the expanded join condition.

and S). Therefore, it is desirable to reduce the number of
possible combinations, and to do so, this paper proposes a
heuristic pruning algorithm.

In experimental evaluation, this paper showcases effec-
tiveness of the implicit order join and efficiency of the
proposed pruning technique. Implicit order join helps ana-
lysts of log data with supplemental information. In order to
show how effectively implicit order join helps analysts, this
paper shows the reduction of human efforts for preparation
of analysis of joined data comparing with naı̈vely joined
results. As a result, the experiment showcases 77% reduction
of human efforts by implicit order join over the naı̈vely
joined results. This paper showcases significant reduction
(orders of magnitude) of attribute sub-sequences by the pro-
posed pruning algorithm, and discusses behaviours of the
algorithm in terms of different situations of attributes for
each relation.

The following summarize the contributions of this paper:

• Missing Key Problem (Section II): This paper formally
gives a series of definitions of the missing key problem.
In the problem, given relations have missing order-
oriented attribute for each, and, because of this, any join
query cannot give appropriate answer. Therefore, the
task for the problem is to discover the missing order-
oriented attributes.

• Effective Implicit Order Join (Section III): To solve
the problem, this paper proposes the implicit order
join algorithm which discovers order-oriented missing
keys with respect to user-provided partial results of
expected join. Experimental evaluation realizes that the
proposed algorithm achieves significant reduction of
human efforts for preparation for further analyses.

• Efficient Pruning Algorithm (Section IV): The critical
issue of the implicit order join is the tremendously huge
search space (O(N !)) of possible attribute sequences
for ordering. Heuristic approach in this paper reduces
the number of possible sequences in several orders of

magnitude by pruning unnecessary super sequences.

II. MISSING KEY JOIN

In the missing key problem, log data and supplemental
information are both assumed in relational format. Log data
consist of records of activity histories of objects and supple-
mental information consist of properties objects’ activities.
For example as shown in Figure 1, suppose that the objects
are garbage collecting cars, the log data R contain logs
of garbage amount at garbage treatment plants, and the
supplemental information S contain routing information of
the cars. The original join query R.Car = S.Car does
not give sufficient results U⇤ (Figure 1(a)). Also, other
possible join conditions with other attributes cannot provide
the appropriate join query for U⇤.

The following formalizes this problematic situation as
missing key problem.

Definition 1 (Missing Key Problem): Given relations R,
S, join condition J and expected join results U⇤, no query
over R ./J S provides U⇤, and there is no auxiliary relation
which enables to join R and S to provide U⇤. ⇤

Based on the observation discussed in Introduction, herein
this paper realizes the oracle where there are order-oriented
relationships between attributes. Therefore, to solve the
missing key problem, this paper attempts to discover com-
plemental attributes which do not exist in the original
relations with help from users’ provided true results. Con-
cretely, join results of Figure 1(a) are not equal to the
sufficient results shown in Figure 1(b), and, if complemental
attributes (x, y) are found from users’ provided true results,
the expected join results can be obtained (Figure 1(c)).

Formally, this paper solves the implicit order-oriented key
discovery problem defined as follows:

Definition 2 (Implicit Order-oriented Key Discovery):
Given relations R, S, join condition J , and expected join
results U⇤, the implicit order-oriented join key discovery
task is to discover complemental attributes x 62 R.attributes

R
Car Course Area

A A-1 D1

A A-2 D2

B B-1 D3

B B-2 D1

C C-1 D2

C C-2 D3

S
Car Weight Time

A 100 4/1/17 10:00

B 150 4/1/17 11:00

C 120 4/1/17 12:00

A 200 4/1/17 13:00

B 180 4/1/17 14:00

C 110 4/1/17 15:00

⋈ Car=Car

Trouble from Missing Key Prob.

• Joined results include large number of
unnecessary tuples.
• To use the results for applications,

(automatic/manual) data cleansing is required.

0 500000 1000000 1500000 2000000 2500000 3000000

Costs

Naive

ProposedExpected

Joined
about 3/4 are unnecessary

An example situation

Objective:
Implicit Key Discovery

0 500000 1000000 1500000 2000000 2500000 3000000

Costs

Naive

ProposedExpected

Joined

R+

Car Course Area y

A A-1 D1 1

A A-2 D2 2

B B-1 D3 1

B B-2 D1 2

C C-1 D2 1

C C-2 D3 2

S+

x Car Weight Time

1 A 100 4/1/17 10:00

1 B 150 4/1/17 11:00

1 C 120 4/1/17 12:00

2 A 200 4/1/17 13:00

2 B 180 4/1/17 14:00

2 C 110 4/1/17 15:00

⋈ "#$%"#$	
∧	(%)

Implicit keys

Observation:
Order-oriented Correlation
• Assumed real-world situation: Joining log
records with supplemental information
• e.g., garbage collection logs and colleting

routes of garbage cars

R
Car Weight Time
A 100 4/1/17 10:00

B 150 4/1/17 11:00

C 120 4/1/17 12:00

A 200 4/1/17 13:00

B 180 4/1/17 14:00

C 110 4/1/17 15:00

Car Course Area

A A-1 D1

A A-2 D2

B B-1 D3

B B-2 D1

C C-1 D2

C C-2 D3

SGarbage collection log Collecting routes in a day

Observation:
Order-oriented Correlation
• Order-oriented correlation: an order of
records in log data is corresponding with
the of supplemental information.

R
Car Weight Time
A 100 4/1/17 10:00

B 150 4/1/17 11:00

C 120 4/1/17 12:00

A 200 4/1/17 13:00

B 180 4/1/17 14:00

C 110 4/1/17 15:00

Car Course Area

A A-1 D1

A A-2 D2

B B-1 D3

B B-2 D1

C C-1 D2

C C-2 D3

SGarbage collection log Collecting routes

1

2

1
2

Order-oriented correlation

Tackling Issue

• Discovery of attribute set pair with
order-oriented correlation with help of
human judged samples

R
Car Weight Time
A 100 4/1/17 10:00

B 150 4/1/17 11:00

C 120 4/1/17 12:00

A 200 4/1/17 13:00

B 180 4/1/17 14:00

C 110 4/1/17 15:00

Car Course Area

A A-1 D1

A A-2 D2

B B-1 D3

B B-2 D1

C C-1 D2

C C-2 D3

S

Order-oriented correlation

Car Weight Time Car Course Area

A 100 4/1/17 10:00 A A-1 D1

B 150 4/1/17 11:00 A A-2 D2

C 120 4/1/17 12:00 B B-1 D3

A 200 4/1/17 13:00 B B-2 D1

B 180 4/1/17 14:00 C C-1 D2

C 110 4/1/17 15:00 C C-2 D3

U*

Human judged samples

^

Implicit Order Join Framework

1. Discover order-oriented attribute pair.
2. Generate complemental attributes.
3. Arrange relations and join conditions.
4. Perform join operation.

Join Key
Discovery

Input
Arrangement

Performing
Join

!
"

#+
%+
&+R S

J

Input

U* U*
Output

discovered keys
arranged

relations & condition

Combinatorial Problem

• Tremendous number of candidates of
attribute set pairs.

• where NR (or NS) are the number of attributes
of relation R (resp. S).
• NX! is the number of enumerations of

attributes in relation X.
• Taking subsequences into account, the number

of each enumeration becomes

Implicit Order Join: Joining Log Data with Property Data
by Discovering Implicit Order-oriented Keys with Human Assistance

Takahiro Komamizu, Toshiyuki Amagasa, Hiroyuki Kitagawa
University of Tsukuba

Tsukuba, Japan
taka-coma@acm.org,{amagasa,kitagawa}@cs.tsukuba.ac.jp

Abstract—Data integration is still laboursome task when in-
tegrating data are not consistently managed. Such inconsistency
can happen easily in real-world situations, such as properties of
objects are managed by a central organization and trajectories
(or logs) of the objects are recorded by other peripheral
organizations. This paper deals with a case of missing ordering
information. Integrating property data and log data without
ordering information causes duplicated results. In order to
solve this problem, this paper proposes a join algorithm,
called implicit order join, which discovers implicit ordering
information from both property data and log data with help of
partial true integrated results from human assistance. With the
discovered ordering information, the implicit order join enables
to integrate the property data and log data. In order to discover
the implicit ordering information, ordering correlation between
attribute sequences of property data and log data should be
found from comprehensive examination of possible attribute
sequence pairs. The potential number of sequence pairs is as
high as factorial order of the number of attributes. Therefore,
this paper develops a heuristic approach to prune unnecessary
examinations based on ordering dependency between attribute
sequences. Experimental evaluation in this paper indicates
that implicit order join can reduce 77% labouring tasks for
integration and the pruning method reduces the number of
attribute sequences in orders of magnitude.

Keywords-Data integration; Order-oriented join; Hidden
Join Key Discovery

I. INTRODUCTION

Integrating log data with supplemental information is
an essential process for comprehensive analyses for log
data [1], [2]. Log data are activity history data of objects
(e.g., garbage collecting cars, human searchers and robots),
and there reasonably exists supplemental information (or
properties) about the objects such as car makers, capacities,
garbage collecting routes, and so on. Supplemental informa-
tion can help understand phenomena (like events or analytic
results) related to the objects in the logs. For instance, area-
oriented analysis over time for garbage collections requires
joining supplemental information of garbage collection cars
which include area information of collecting routes.

In reality, there are many cases that log data and sup-
plemental information are managed separately and are oc-
casionally managed by different organizations, therefore,
correspondences of records in log data and supplemental
information can be ambiguous. Management of different

functionalities tends to be distributed over sections. Al-
though individual sections perfectly manage data for their
functionalities, integrating their data with others can be
troublesome because of the integration may be out of scope
for the data management in individual sections.

Motivating real-world example in this paper is about
garbage collection logs. A local government manages
garbage collection and holds routing information of garbage
collection for collecting cars. On the other hand, a centre
for waste treatment plants records the amounts of garbage
whenever garbage collecting cars bring garbage from their
routes. These data are able to integrate directly by identifiers
of cars. However, each car comes to several routes in a day,
therefore, matching between routing information and logs is
ambiguous. An oracle for disambiguating the matching is
that there is a correlation between the order of routes in the
routing information and that of logs for each car.

This paper formulates the problem of missing correspon-
dences between log data and supplemental information as
missing key problem, and, to cope with the problem, this
paper proposes a join algorithm called implicit order join
(illustrated in Figure 1). In missing key problem, a key issue
is that hidden relationships are necessary to be discovered.
With help of the aforementioned example, it is observable
that there is an order-oriented (implicit) relationship between
log data and supplemental information. According to the
observation, this paper proposes implicit order join for log
data and supplemental information with respect to implicit
order-oriented relationships.

A research issue on the implicit order join is the enormous
search space of possible attribute sequences for ordering,
therefore, this paper proposes a heuristic pruning algo-
rithm to reduce the search space. The main process of
implicit order join is that, given two relations, it finds
minimal sub-sequences of attributes for each relation where
the orderings of values of the sub-sequences between the
relations indicate order-oriented relationships. The number
of possible sub-sequences of a relation is quite large (i.e.,
O(N !) where N is the number of attributes in a relation)
and that of possible combinations of sub-sequences between
relations is thus tremendously large (i.e., O(NR!NS !) where
NR and NS are the numbers of attributes in relation R

Join Key
Discovery

Input
Arrangement

Performing
Join

!
"

#+
%+
&+R S

J

Input

U* U*
Output

discovered keys
arranged

relations & condition

Figure 2: Implicit order join framework. Given relations R, S, join condition J , and part bU⇤ of expected join results, the
framework (1) discovers hidden join keys x and y for R and S respectively, (2) arranges R,S and J with the discovered
keys, and (3) performs join operation over the arranged relations and condition to obtain U⇤.

and y 62 S.attributes, such that x and y are rank values
derived from sequences of attributes in R and S, and joining
extended relations R+.attributes = R.attributes [{x}
and S+.attributes = S.attributes [{y} with join
condition J+ = J ^ (x = y) provides U⇤. ⇤

In reality, preparation for the whole true join results U⇤

is as bothersome as creating the join results by hand, thus,
only partial true joint results bU⇤ ✓ U⇤ are assumed to be
provided. Accordingly, joining relations through discovering
implicit order-oriented keys is re-defined as follows:

Definition 3 (Implicit Order Join by Sample): Given re-
lations R, S, join condition J , and sample expected join
results bU⇤ ✓ U⇤, implicit order join firstly discovers implicit
order-oriented keys based on bU⇤, then joins extended rela-
tions R+ and S+ by extended join condition J+ to provide
R+

onJ+ S+ = U⇤. ⇤

III. IMPLICIT ORDER JOIN

Figure 2 illustrates a framework for realizing the implicit
order join by sample (Definition 3), which consists of three
components: Join Key Discovery, Input Arrangement, and
Performing Join. The first component discovers implicit
order-oriented attributes on both given relations, the second
component extends the given relations and join condition
by the discovered attributes, and the last component executes
the extended join query over the extended relations. Because
the subsequent two components are obvious if the implicit
order-oriented attributes are discovered, the following dis-
cuss on the first component.

The task of the Join Key Discovery component is:
Given: Relations R,S, join condition J , and sample bU⇤

of expected join results
Find: Sequences qR and qS of attributes from R and S

such that complemental attributes x = rank(qR),
y = rank(qS) within values of join key values
of J result �(R+ ./J+ S+) = bU⇤ where � is a
selection operation for filtering join key values of
J in bU⇤.

Basic strategy for finding qR and qS is that it enumerates
attributes of R and S, generates rank values for each

sequence, and examine whether the ranking values can
be the complemental attribute values by joining R and S
with the complemental attributes. A naı̈ve approach for
the enumeration is to enumerate all possible sequences of
subsets of attributes. Other naı̈ve approach is to enumerate
all possible sequences of attributes, in other words, only the
longest sequences are taken into consideration.

Examination of rank values for enumeration from both
naı̈ve approaches can provide expected results bU⇤. The first
naı̈ve approach provides possible sequences of subsets of
attributes, therefore, it obviously contains attribute sequences
which provide expected results. For the latter approach, there
is always at least one sequences which prefix is expected
sequence of attributes, because the approach provide all
combinations of attribute.

However, even though they are accurate, these naı̈ve
enumeration approaches are more or equally expensive than
O(N !) where N is the number of attributes. For the first
approach, the number of possible sequences is

PN
i=1

�N
i

�
i!.

While, the latter approach provides N ! of possible se-
quences. They are quite expensive if the number N of
attributes increases. In reality, the number of attributes can
be large, therefore, less expensive approaches are desirable.
This paper proposes a heuristic-based approach to tackle
with the problem in Section IV.

IV. HEURISTIC ORDER-ORIENTED KEY DISCOVERY

To realize less expensive order-oriented key discovery
algorithm, this paper proposes a heuristic-based algorithm.
The heuristic approach is based on a fact that when a
sequence of attributes provides deterministic ordering of
records, any super-sequence which contains the sequence as
prefix always provides same ordering of records, Therefore,
whenever sequences with deterministic ordering of records
are discovered, super-sequences which prefixes are the se-
quences can be ignored. In order to utilize this fact, the pro-
posed algorithm employs bottom-up traversal of candidate
attribute sequences.

Figure 3 illustrates the bottom-up traversal with pruning.
The traversal starts from empty sequence (i.e., ()), and,
for each step, generate sequences which are one-attribute

Pruning of Candidates

• Idea: a sequence of attribute gives
deterministic ordering of records, super-
sequences of it give the same ordering.
• e.g., if (r1, r2) è (d1, d2, d3),

then (r1, r2, r3) è (d1, d2, d3)
• Strategy
• Bottom-up traversal
• Stopping enumeration by the idea.

Bottom-up Traversal

• Relation R has three attributes
r1, r2 and r3.
• Traversal starts from
empty and add
attribute one
by one.

()

(r1) (r2) (r3)

(r1,r2) (r2,r1) (r3,r1)(r1,r3) (r2,r3) (r3,r2)

(r1,r2,r3) (r2,r1,r3) (r3,r1,r2)(r1,r3,r2) (r2,r3,r1) (r3,r2,r1)

Start

Pruning

()

(r1) (r2) (r3)

(r1,r2) (r2,r1) (r3,r1)(r1,r3) (r2,r3) (r3,r2)

(r1,r2,r3) (r2,r1,r3) (r3,r1,r2)(r1,r3,r2) (r2,r3,r1) (r3,r2,r1)

�

�

Deterministic
ordering

Stop
traversal

When at tail,
deterministic
ordering too.

Experimental Evaluation

• Objective
1. Check effectiveness of the implicit order join.
2. Check efficiency of the pruning.

• Datasets
1. Real-world data from Fujisawa city, Japan.

• Garbage collection logs and routing info.
2. Synthetic data*

• Tunable parameters
• #attributes: total number of attributes
• #oo-attributes: size of order-oriented attribute set

*https://github.com/Taka-Coma/OOJBench

Implicit Order Join is Effective.

• 77% reduction of joined results.
• Carefully checked by human judges that
the results are correct.

0 500000 1000000 1500000 2000000 2500000 3000000

Costs

Naive

Proposed

Figure 4: Cost comparison between the implicit order join
and ordinary join.

To ensure the theoretical analysis, in this experiment, the
ordinary join processing and the proposed framework are
compared to evaluate the aforementioned labouring costs
using real-world data. The ordinary join processing concate-
nates two relations with most required conditions, meaning
that more filtering can be done by implicit join keys. The
number k of (randomly) selected join keys is five in this
experiment due to usability.

The dataset for evaluation is offered from Fujisawa city
in Japan. The dataset includes garbage collection routing
data and garbage collection logs. Structures of these data
are almost same as shown in Figure 1. The routing data
include 629 recodes with 98 trucks which cover 6.4 routes on
average, while, the log data include 454,123 records which
span from 2011 to 2016. For an analytic scenario for the
dataset, the log data are split by each day due to the fact
that all of the trucks work in a day. Thus, to apply the
proposed framework, several days are randomly selected to
learn order-oriented join keys.

Figure 4 showcases the human labouring cost comparison
between the implicit order join and the ordinary join, indicat-
ing that the implicit order join significantly reduces the costs.
This figure says if analysts observe the ordinarily joined
results and filter unnecessary results, they have to evaluate
about 2.9 million records. Obviously this is so bothersome
and requires large personnél expenditures. The implicit order
join achieves 77% cost reduction from the ordinary join.

B. Efficiency of Join Key Discovery Algorithm
In this experiment, this paper examines that the proposed

pruning algorithm reduces the number of possible attribute
sequences to be examined in the implicit order join. As
discussed in Section III, naı̈ve approaches enumerate (1)
all possible sequences for all subsets of attributes, or (2)
all possible sequences for all attributes. To cope with the
tremendously large search space, the proposed pruning al-
gorithm traverses in a bottom-up manner and eliminates
unnecessary traversal when an attribute sequence gives de-
terministic ordering of records. To ensure the efficiency of
the algorithm, this experiment develops a dataset generator,
OOJBench, and compares the number of attribute sequences
taken into consideration.

1) OOJBench: To test the efficiency of the proposed
algorithm, OOJBench is aimed to generate two relations
with order-oriented correlations in some attributes. The

benchmark is available on the author’s GitHub site1. In the
benchmark, basically two kinds of parameters are tunable,
one is the number of attributes on each relation and the
other is that of order-oriented attributes. With the tuned
parameters, the benchmark generates two relations. Each
relation has an attribute for equi-join, specified number
of attributes for order-oriented join, and others as random
attribute. When to fill the two relations, the benchmark
generates a true joined relation which is joined results
with implicit order-oriented attributes. Further description
is available on the site.

With generated relations, the task for joining them is to
discover the order-oriented attributes in the true order. The
correctness is evaluated by equality check between joined
relation with the true joined relation.

2) Number of Combinations: Using OOJBench, this ex-
periment compares the number of combinations of attribute
sequences for given two relations in order to give true
join results in terms of the number of attributes as well
as that of order-oriented attributes. This experiment is 2-
fold: (1) fix the number of order-oriented attributes and
change the number of attributes on each relation, and (2) fix
the number of attributes and change the number of order-
oriented attributes on each relation.

Figure 5 depicts the results on the two-fold experiment.
The figures include three dimensional lines for each sub-
figure, darkest lines (All) represent the naı̈ve approach
considering all of attribute sequences for all subsets of
attributes, modest dark lines (Longest) represent the other
naı̈ve approach considering all of attribute sequences for
all attributes, and the lightest lines (Pruned) represent the
proposed pruning algorithm. Vertical axes of the sub-figures
represent the number of combinations of attribute sequences
(note for its logarithmic scale). Two dimensional bottom
axes represent the numbers of attributes in the relations
(the former experiment) or the numbers of order-oriented
attributes in the relations (the latter experiment). Note that
the numbers of combinations on the naı̈ve approaches can
be calculated when the numbers of attributes are fixed as
discussed in Section III.

The former experiment observes the effect of the number
of attributes on pruning. In this experiment, the number of
order-oriented attributes is fixed to three, and the number
of attributes in each relation is changed from 6 to 15.
Figure 5(a) shows that the proposed pruning algorithm is
almost stable in terms of the numbers of attributes in the
relations, while the naı̈ve methods get high orders as soon as
the numbers of relations increase. As a result, as the numbers
of attributes in the relations increase, the proposed prun-
ing methods eliminate great number of attribute sequences
(about 20 orders of magnitude in the largest case).

The latter experiment observes the effect of the number

1https://github.com/Taka-Coma/OOJBench

The number of results

Efficiently prune for large #attrs.
Processing time in logarithmic scale

• The larger #attrs, the
more #candidates in
enumeration.
• Pruning effects big

reduction of
#candidates esp. when
#attrs is large.

• Baselines
• all: enumeration of subsequences of attributes
• longest: enumeration of all attributes

#oo-attrs affects performance.

• The larger #oo-attrs,
the more processing
time.
• Still far better than

baselines.

Processing time in logarithmic scale

• Baselines
• all: enumeration of subsequences of attributes
• longest: enumeration of all attributes

Conclusion and Future Work

• Conclusion
• Definition: Missing key problem
• Proposal: Implicit order join framework

• Order-oriented correlation assumption
• Experiment: Effectiveness and Efficiency

• Future Work
• General approach for implicit join

• Removal of the assumption

