Graph Analytical Re-ranking for Entity Search

Takahiro Komamizu Nagoya University Japan

Recall@k (k=10, 100, 1000)

Model	Total						
Model	@10	@100	@1000				
BM25	.1823	.5175	.7703				
PRMS	.2522	.5919	.8009				
MLM-all	.2571	.6136	.8009				
LM	.2607	.6413	.8009				
SDM	.2659	.6674	.8633				
LM-ELR	.2646	.6483	.8006				
SDM-ELR	.2739	.6782	.8633				
MLM-CA	.2639	.6370	.8329				
BM25-CA	.2782	.6727	<u>.8708</u>				
FSDM	.2812	.6667	.8455				
BM25F-CA	.2811	<u>.6912</u>	.8653				
FSDM-ELR	.2872	.6765	.8450				
max	.2872	.6912	.8708				
gap	.5836	.1796					

- DBpedia-Entity v2
- Recall@k #Relevant items@k

#Relevant items

- Gaps
 - @10, 58% drops from @1000
 - @100, 18% drops from @1000
- Missing 13% in top-1000

Research Overview

- <u>Obj.1</u>: Improvement of ranking
 - To fill the gaps
 - To try graph analytical approach
 Q1 "Do graph analytical approaches improve ranking?"
- <u>Obj. 2</u>: Investigation for non-perfect recall
 - @1000 miss more than 15% in harder tasks
 - To improve in the future researches
 > Q2 "How far query terms from relevant entities?"

Task	SemSearch ES	INEX-LD	ListSearch	QALD-2	Total
max	.9865	.8603	.8431	.8164	.8708

Current State of Entity Search

- Fielded document model
 - Entity has 1000 fields and 3 special fields
 - 1000 of most frequent predicates in DBpedia
 - specials: name, types, contents
 - contents: contents of fields in neighbor entities
- Many approaches
 - BM25, BM25-CA, LM, SDM, PRMS, MLM-all
 - Fielded extensions: MLM-CA, FSDM, BM25F-CA
 - With entity linking: LM-ELR, SDM-ELR, FSDM-ELR
 - 1. Text-based matching and ranking models
 - 2. Literals of entities at most 1-hop away are taken into account

Improving Ranking by Re-ranking

- Objective: improve top-10 and top-100 rankings
- Approach: re-ranking top-1000
 - Top-1000 includes more than 80% results
 - Graph analytical approaches (e.g., PageRank)
- Naive approaches are quite bad
 - PageRank and personalized PageRank

Re-ranking method	SemSearch ES		INEX-LD		ListSearch		QALD-2		Total	
Re-ranking method	@10	@100	@10	@100	@10	@100	@10	@100	@10	@100
PageRank	.1545	.4664	.1171	.3639	.1059	.4438	.1561	.4519	.1344	.4198
Personalized PageRank	.1632	.4779	.1228	.3822	.1146	.4524	.1613	.4587	.1397	.4355

Obj.1: Improvement of ranking

PPRSD: score distribution

(Personalized PageRank based Score Distribution)

- Observation: existing approaches already have good results (scores for ranking).
- Approach: distribute the scores in a personalized PageRank manner

$$pprsd_q = (1 - d) \cdot pprsd_qA + d \cdot t$$

Adjacency matrix of
an induced subgraph
for top-1000 entities

Adjacency matrix of
an induced subgraph

Obj.1: Improvement of ranking PPRSD (*-ed) improves ranking? – Yes, both recall and NDCG

Red: improved Blue: degraded

Recall

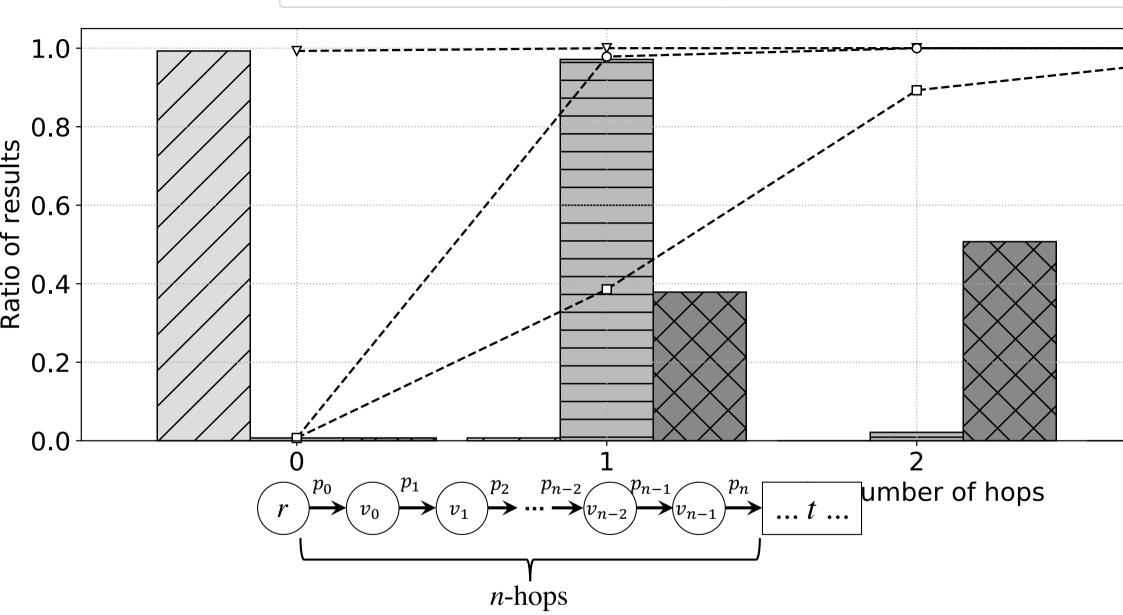
NDCG

Model	Total				Model	Total					
	@10	@100				Model	@10	@100			
BM25	.1823	.5175	SDM-ELR	.2739	.6782	BM25	.2558	.3582	SDM-ELR	.4261	.5211
BM25*	.1983	.5466	SDM-ELR*	.2749	.6786	BM25*	.2812	.3847	SDM-ELR*	.4271	.5218
imp.	+7.57%	+4.70%	imp.	+0.37%	+0.06%	imp.	+9.93%	+7.40%	imp.	+0.23%	+0.13%
PRMS	.2522	.5919	MLM-CA	.2639	.6370	PRMS	.3905	.4688	MLM-CA	.4365	.5143
PRMS*	.2522	.5919	MLM-CA*	.2639	.6371	PRMS*	.3913	.4698	MLM-CA*	.4361	.5150
imp.	0.00%	0.00%	imp.	0.00%	+0.02%	imp.	+0.20%	+0.21%	imp.	-0.09%	+0.14%
MLM-all	.2571	.6136	BM25-CA	.2782	.6727	MLM-all	.4021	.4852	BM25-CA	.4399	.5329
MLM-all*	.2571	.6136	BM25-CA*	.2826	.6795	MLM-all*	.4030	.4863	BM25-CA*	.4475	.5404
imp.	0.00%	0.00%	imp.	+1.33%	+0.97%	imp.	+0.22%	+0.23%	imp.	+1.73%	+1.41%
LM	.2607	.6413	FSDM	.2812	.6667	LM	.4182	.5036	FSDM	.4524	.5342
LM*	.2607	.6410	FSDM*	.2813	.6671	LM*	.4191	.5046	FSDM*	.4527	.5350
imp.	0.00%	-0.03%	imp.	+0.04%	+0.06%	imp.	+0.22%	+0.20%	imp.	+0.07%	+0.15%
SDM	.2659	.6674	BM25F-CA	.2811	.6912	SDM	.4185	.5143	BM25F-CA	.4605	.5505
SDM*	.2671	.6684	BM25F-CA*	.2865	<u>.6963</u>	SDM*	.4191	.5152	BM25F-CA*	.4673	.5581
imp.	+0.41%	+0.13%	imp.	+1.99%	+0.72%	imp.	+0.14%	+0.17%	imp.	+1.48%	+1.38%
LM-ELR	.2646	.6483	FSDM-ELR	.2872	.6765	LM-ELR	.4230	.5093	FSDM-ELR	.4590	.5408
LM-ELR*	.2646	.6473	FSDM-ELR*	<u>.2873</u>	.6769	LM-ELR*	.4240	.5103	FSDM-ELR*	.4587	.5416
imp.	0.00%	-0.12%	imp.	+0.03%	+0.06%	imp.	+0.24%	+0.20%	imp.	-0.07%	+0.15%

Research Overview

- <u>Obj.1</u>: Improvement of ranking
 - To fill the gaps
 - To try graph analytical approach
 > Q1 "Do graph analytical approaches improve ranking?"
 > A1 "Yes, but still limited improvement."
- <u>Obj. 2</u>: Investigation for non-perfect recall
 - @1000 miss more than 15% in harder tasks
 - To improve in the future researches
 > Q2 "How far query terms from relevant entities?"

Task	SemSearch ES	INEX-LD	ListSearch	QALD-2	Total
max	.9865	.8603	.8431	.8164	.8708



-¬ Cumulative (min) - - Cumulative (avg) - - Cumulative (max) Z Ratio

Investigation Methodology

Given a query and relevant entities

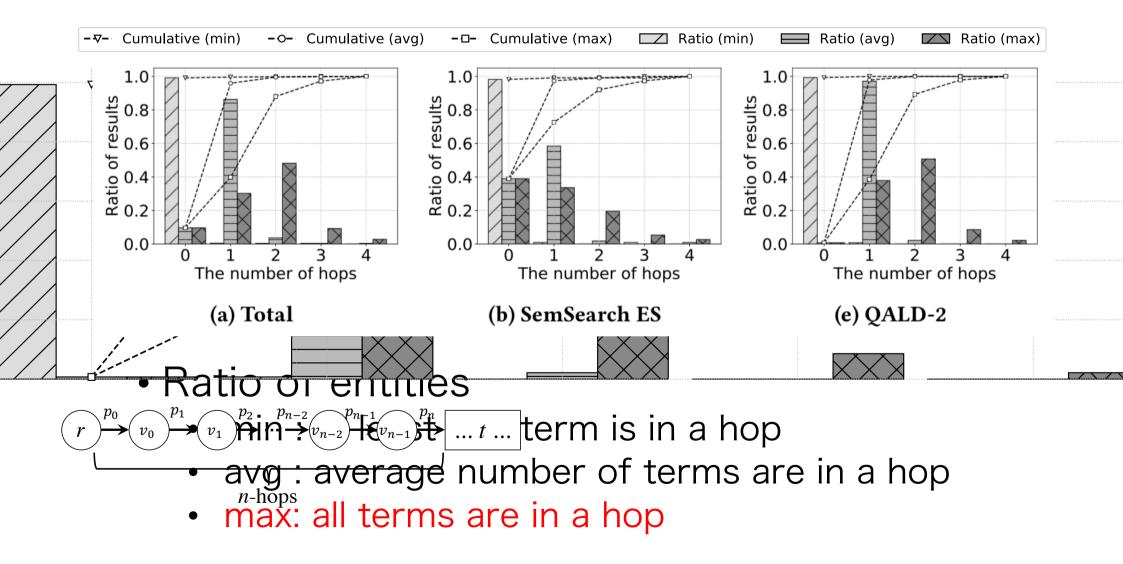
- 1. Parse the query into terms
- 2. For each relevant entity r
 - 1. For each term t in the query
 - 1. Calculate minimum distance n from r to t by SPARQL queries like the following

```
ASK{ (r) ?p0 ?v0. ?v0 ?p1 ?v1.
?v1 ?p2 ?l. ?l bif:contains 't'.
FILTER isLiteral(?l).}
```

- 2. Record n for (r, t)
- 3. Analyze representative distances
 - min, max, avg

Obj. 2: Investigation for non-perfect recall

Result: one hop is not enough



Discussion

Literals in longer hops should be taken into documents of entities

- Issue: noisy terms will be in the documents
 - Increasing distances for the documents explosively increases the number of reachable literals.
- Possible solutions
 - *"important"* path selection
 - Prioritization of predicates (e.g., ObjectRank)
 - Graph-based proximity
 - e.g., Random walk with restart

Conclusion

- <u>Obj.1</u>: Improvement of ranking
 - To fill the gaps
 - To try graph analytical approach
 Q1 "Do graph analytical approaches improve ranking?"
 A1 "Yes, but still limited improvement."
- <u>Obj. 2</u>: Investigation for non-perfect recall
 - @1000 miss more than 15% in harder tasks
 - To improve in the future researches
 Q2 "How far query terms from relevant entities?"
 A2 "More than one hop, but careful selection of paths is required."