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• Others
• clinical domain [5], economic domain [25],

agricultural domain [28], software engineering domain [26], 
computer network domain [11], etc.

Class Imbalance is Universal Phenomenon

E-mail Spam Credit Card Fraud Driving Behavior
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• Classifiers tend to prefer majority class
• Choosing majority (say negative) class has more chance 

to increase accuracy score, beacuse #𝑇𝑁 ≫ #𝑇𝑃
• 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = #"# $#"%

#"# $#"% $#&# $#&%

• Consider 1 positive instance and 99 negative instances
• All negative: accuracy = 99%
• For classifiers, it looks (almost) optimal. 

• In reality, minority class is more important.
• What if your spam filter regards all mail as non-spam?
• What if your fraud detector rageds all as normal action?

Classifiers suffer from Class Imbalance
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• Cost-sensitive learning approach
• Desing cost function that gives higher penalty

when classifiers fail to correctly classify the minority classes.
• Depending on classification methods.

• Data-level approach
• Add or remove data points so that

instances of classes are balanced.
• Adding: Oversampling / Synthetic oversampling (e.g., SMOTE, SWIM)
• Removing: Undersampling (US)

• NOT depending on classification methods.

Two Major Approaches for Class Imbalance
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• Simple undersampling wastes major part of samples.

• EE samples multiple times so that most of samples 
are used in trianing an ensemble classifier.

EasyEnsemble (EE)[10]: ensemble multi samples
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MUEnsemble[8]: previous work
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Dealt with sampling ratio
determination problem
by ensemble approach.



What about feature space?
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US

Metric Learning (ML) e.g., LMNN [19]
Learning a transformation s.t.
• samples of the same classes get closer, 
• samples of the different classes get further
ML also suffers from the class imbalance.
è [18] shows US + ML improves classification 

performance in the class imbalance data.



• Overall framework is based on MUEnsemble.

8
MMEnsemble: ensemble multiple rates w/ ML
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• MUEnsemble [8] uses heuristic schemes.
• Idea: Taking classification performances of base 

classifiers into account
• High weight for classifiers which can classify difficult samples
• Easiness of sample 𝑖 is measured by #classifiers (𝐶') correctly classify.

𝑇( = {𝐶' | 𝐶' ∈ 𝐶, 𝐶' . 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑑( = ℓ(

• Asset-based Weighting Scheme

9
Asset-based Weighting Scheme
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the i-th instance, the number Ti of base classifiers that correctly classify the i-th
instance is obtained. That is, Ti = |{Cj |Cj ∈ C,Cj .predict(di) = !i}|. This num-
ber indicates how hard (or easy) an instance is to classify. The intuition behind
using this number for weighting base classifiers is that the lower the number,
the more weights on a base classifier if it correctly classifies the instance. This
intuition is formalized by the following formula.

Wasset(r) =
1∑

r∈R Wasset(r)
·

∑

(di,!i)∈D(val)

δ (Cr.predict(di), !i) · T−k
i , (2)

where k is a tunable parameter for emphasizing the importance of the classifiers
that correctly classify instances that other classifiers cannot, δ function is the
Kronecker delta (i.e., 1 if the two arguments are equal, 0 otherwise).

4 Experimental Evaluation

In this experiment, MMEnsemble was evaluated to answer the questions below.

Q1 Does MMEnsemble outperform the state-of-the-art imbalanced classification
methods of metric learning, oversampling and undersampling?

Q2 Is the combination of metric learning and multi-ratio ensemble effective?
Q3 Does the asset-based weighting help improve the classification performance?

and what is the effect of choice of its hyper-parameter k (Eq. 2)?

4.1 Settings

Datasets: The datasets for the experiment were obtained from the OpenML
dataset [16] and KEEL repository [1]. Table 1 shows the total number of records
(#records), the number of minority instances (#minor), dimensionality (#dim),
and the imbalance ratio (IR), which is #major

#minor . D1-D6 were obtained from the
OpenML dataset, and the rest were obtained from the KEEL repository.

Evaluation: The evaluation metrics were Recall, Gmean, F2, and AUC. Let TP,
FN, TN, and FP be the true positives, false negatives, true negatives, and false
positives. Recall = TP

TP+FN measures how many positive (minority) instances
are correctly classified. Gmean =

√
Recall · TNR is the geometric mean of the

recalls of both classes, where TNR = TN
TN+FP . Fβ = (1+β2)Recall·Precision

Recall+β2Precision is the
harmonic mean of the recall and precision, where Precision = TP

TP+FP , and β
determines the weight on the recall. In this experiment, β was set to 2 because
the higher recalls are preferred in many real-world applications. AUC is the area
under the receiver operation characteristic curve.

To accurately estimate these evaluation metric values, the experimental pro-
cess was repeated 50 times. In the process, a dataset was randomly separated
into 70% for training and 30% for testing, and the classifiers were trained on the
training set and evaluated using the test set. The overall metric scores were the
macro average of the 50 trials.

Kronecker delta Weight for difficult samples

Difficulty is measured for validation set.



• Q1: Does MMEnsemble outperform the state-of-the-art 
imbalanced classification methods of metric learning and 
undersampling?

• Q2: Is the combination of metric learning and multi-ratio 
ensemble effective?

• Q3-1: Does the asset-based weighting help improve the 
classification performance? 

• Q3-2: and what is the effect of choice of its hyper-
parameter k in the asset-based weighting?
• Refer to the paper

Research Questions in the expriment
BackgroundExisting WorkProposed MethodExperiment 10



• Selection of the datasets is same as SOTA US+ML 
approach (DDAE) [20]. 

11
Datasets from OpenML / KEEL Repositories
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Table 1. Datasets

ID Name #records #minor #dim IR

D1 cm1 498 49 21 9.2

D2 kc3 458 43 39 9.7

D3 mw1 403 31 37 12.0

D4 pc1 1,109 77 21 13.4

D5 pc3 1,563 160 37 8.8

D6 pc4 1,458 178 37 7.2

D7 yeast1-7 459 30 7 14.3

D8 abalone9-18 731 42 8 16.4

D9 yeast6 1,484 35 8 41.4

D10 abalone19 4,174 32 8 129.4

D11 wine3-5 691 10 11 68.1

D12 abalone20 1,916 26 8 72.7

Baseline Methods: MMEnsemble was compared with the state-of-the-art
methods of metric learning, and the ensemble approach. IML [18] is a state-
of-the-art approach of metric learning and copes with the class imbalance. IML
incorporates LMNN [19] and iteratively selects training samples to improve the
data transformation. For the undersampling and ensemble method, DDAE [20]
is the state-of-the-art and also includes metric learning. Since the experiment
setting is the same as [20], the results of IML and DDAE were copied from it.

To answer Q2, MMEnsemble was compared with EasyEnsemble [10],
MUEnsemble [8], and MLEnsemble (in this paper), which are an
undersampling-based ensemble, a multi-ratio undersampling-based ensemble,
and a metric learning incorporating EasyEnsemble, respectively. The differ-
ence between EasyEnsemble and MMEnsemble shows the benefit of integrating
both the metric learning and the multi-ratio ensemble. Similarly, the difference
between MMEnsemble and MUEnsemble shows the benefit of metric learning to
improve the performance for the imbalanced classification.

Parameters: The parameters of EasyEnsemble, MLEnsemble, and MUEnsem-
ble were set as follows. The sampling ratio in EasyEnsemble and MLEnsemble
was set to 1.0. The metric learning method was LMNN with the k parameter
of kNN set to 3. For MUEnsemble, the predefined set R of sampling ratios is
set to {0.2, 0.4, . . . , 2.0}, and Gaussian weighting was used with parameters, µ
and σ2, of 1.0 and 0.2, where µ was fixed to 1.0 have the parameter be the
same as the former methods, and the best σ2 was experimentally explored from
{0.1, 0.2, . . . , 1.0}. For MMEnsemble, the base classifier, MLEnsemble, was set
the same as above, R is the same as MUEnsemble, and k of the asset-based
weighting was chosen from {0.1, 0.2, . . . , 5.0}.

OpenML

KEEL

𝐼𝑅 =
#𝑚𝑎𝑗𝑜𝑟
#𝑚𝑖𝑛𝑜𝑟



Comparison SOTA methods
12

MMEnsemble achieves best in Rec and AUC.
Gm and 𝐹! are comparable, because precision is a little sacrificed.
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Table 2. Comparison with State-of-the-art Methods of Metric Learning (IML), and
Ensemble (DDAE) – †means that scores were copied from [20].

Data IML† DDAE† MMEnsemble

Rec Gm F2 AUC Rec Gm F2 AUC Rec Gm F2 AUC

D1 .313 .520 .287 .589 .813 .775 .580 .776 .863 .756 .546 .819

D2 .692 .805 .652 .814 .846 .823 .625 .823 .952 .750 .534 .868

D3 .500 .635 .345 .653 .750 .815 .588 .817 .793 .772 .528 .866

D4 .852 .657 .408 .679 .963 .819 .573 .830 .944 .819 .548 .895

D5 .510 .578 .342 .582 .735 .743 .536 .744 .867 .794 .598 .854

D6 .814 .725 .574 .730 .932 .804 .676 .813 .963 .873 .748 .934

D7 .667 .716 .471 .718 .833 .841 .649 .841 .933 .808 .512 .883

D8 .600 .709 .375 .719 .700 .814 .603 .824 .886 .877 .650 .941

D9 .700 .798 .407 .805 .900 .883 .421 .883 .931 .920 .585 .976

D10 .667 .626 .037 .628 1.000 .839 .075 .852 .935 .835 .128 .876

D11 .000 .000 NA .500 .333 .550 .156 .620 .894 .842 .188 .939

D12 .800 .802 .252 .802 1.000 .964 .556 .965 .992 .943 .451 .982

4.2 Results

To answer the questions, the experimental results are shown from three per-
spectives: an overall comparison (corr. Q1), the ablation study (corr. Q2), and
a comparison over the k parameter and other weighting schemes (corr. Q3).

Overall Comparison: Table 2 showcases the metric scores of MMEnsemble
with the state-of-the-art methods. In the table, the highest scores in a row are
boldfaced. MMEnsemble totally outperformed IML and ProWSyn, and it outper-
formed DDAE in recall and AUC, and it was comparable with DDAE in terms of
Gmean and F2 metrics. It is noteworthy that MMEnsemble totally outperformed
the others on the AUC metric, and it achieved almost the best performance on
the recall metric. For the real-world applications, a high recall is preferable; there-
fore, this superiority of MMEnsemble is practically useful. On the contrary, the
Gmean and F2 scores were comparable with DDAE. On datasets, D5, D6, D8,
D9, and D11, MMEnsemble clearly outperformed DDAE, however, on the other
datasets, MMEnsemble was inferior to DDAE or comparable. This was caused by
the low TNR and precision scores for MMEnsemble, coming from the weighting
scheme design (i.e., the asset-based weighting). Asset-based weighting is designed
to emphasize the base classifiers that correctly classify instances that others can-
not. This increases the chance of increasing the number of false positives.

Impact of the Combination: Table 3 shows a comparison of MMEnsemble
and its basic approaches. The comparisons of EasyEnsemble to MLEnsemble and
MUEnsemble show that the classification performance could be slightly increased

ML US+ML Proposed

• 𝐺𝑚 = 𝑇𝑃𝑅 ) 𝑇𝑁𝑅: geometric mean of true positive rate and true negative rate
• 𝐹!: recall-weighted f-measure 



Is the combination of ML + MR effective?
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Table 3. Ablation Study – EE, ML, and MR stand for EasyEnsemble, metric learning,
and multi-ratio ensemble, respectively.

Data MLEnsemble (EE + ML) MUEnsemble (EE + MR) MMEnsemble (EE + ML + MR)

Rec Gm F2 AUC Rec Gm F2 AUC Rec Gm F2 AUC

D1 .751 .695 .475 .754 .812 .698 .484 .783 .820 .699 .483 .783

D2 .854 .742 .518 .831 .821 .718 .490 .826 .891 .731 .509 .862

D3 .790 .720 .461 .817 .761 .700 .439 .820 .864 .761 .506 .860

D4 .875 .804 .533 .871 .880 .788 .509 .860 .873 .816 .548 .885

D5 .821 .760 .554 .821 .828 .753 .546 .828 .844 .781 .581 .837

D6 .921 .844 .707 .907 .946 .883 .764 .934 .971 .873 .747 .921

D7 .787 .746 .444 .830 .792 .743 .438 .818 .860 .749 .444 .859

D8 .835 .822 .537 .913 .769 .757 .440 .840 .911 .835 .531 .959

D9 .893 .874 .438 .951 .850 .857 .427 .935 .885 .890 .508 .973

D10 .835 .762 .101 .828 .911 .770 .096 .834 .999 .828 .112 .887

D11 .735 .697 .144 .797 .785 .753 .178 .841 .765 .724 .160 .795

D12 .882 .875 .330 .951 .870 .840 .248 .931 .987 .923 .363 .985

by adding either the metric learning or the multi-ratio ensemble. The archi-
tectural difference between MUEnsemble and MMEnsemble is whether metric
learning is involved; therefore, to observe the performance improvement caused
by the difference, MMEnsemble was incorporated with the Gaussian weighting
(Eq. 1). On the basis of this comparison, MMEnsemble showed its superiority to
MUEnsemble, that is, the metric learning successfully improved the data space
in the sets of data for each sampling ratio. In addition, as it can be seen by
comparing the columns of MMEnsemble in Table 2 and Table 3, MMEnsemble
with the asset-based weighting was superior to that with the Gaussian weighting;
therefore, MMEnsemble clearly outperformed MUEnsemble.

Effect of the Asset-Based Weighting: Figure 2 shows the effect of the hyper-
parameter k on the asset-based weighting. A basic finding is that the recall scores
dropped as k increased. This is because the higher the k, the more weights
are given to the base classifiers that can correctly classify instances that are
incorrectly classified by the other base classifiers. This leads to a higher TNR
and precision; therefore, as k increases, the Gmean and F2 scores increase, and
similarly, AUC scores gradually increase.

Table 4 shows a comparison of the asset-based weighting with uniform weight-
ing. Uniform weighting gave equal weights for all base classifiers. MMEnsemble
with uniform weighting tended to achieve high recall scores, but low scores for
the other metrics. This indicates that taking the average performance among
the base classifiers trained using datasets of different sampling ratios increases
the number of instances classified to the minority class.

Although the details are omitted due to space limitations, it is noteworthy that
MLEnsemble with the asset-based weighting showed a similar classification per-

(MR = multi-ratio ensemble)

MMEnsemble – MR MMEnsemble – ML

Comparable Almost best

MMEnsemble can take both advantages of MR and ML



Weighting Scheme Comparison
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Table 4. Comparison between Uniform and Asset-based Weighting

Data Uniform Gauss Asset

Rec Gm F2 AUC Rec Gm F2 AUC Rec Gm F2 AUC

D1 .893 .637 .456 .781 .820 .699 .483 .783 .863 .756 .546 .819

D2 .950 .711 .502 .818 .891 .731 .509 .862 .952 .750 .534 .868

D3 .813 .692 .435 .815 .864 .761 .506 .860 .793 .772 .528 .866

D4 .954 .788 .505 .891 .873 .816 .548 .885 .944 .819 .548 .895

D5 .923 .748 .550 .840 .844 .781 .581 .837 .867 .794 .598 .854

D6 .972 .846 .710 .925 .971 .873 .747 .921 .963 .873 .748 .934

D7 .915 .742 .432 .882 .860 .749 .444 .859 .933 .808 .512 .883

D8 .900 .817 .509 .931 .911 .835 .531 .959 .886 .877 .650 .941

D9 .910 .872 .413 .954 .885 .890 .508 .973 .931 .920 .585 .976

D10 .924 .758 .091 .837 .999 .828 .112 .887 .935 .835 .128 .876

D11 .633 .666 .152 .810 .765 .724 .160 .795 .894 .842 .188 .939

D12 .873 .858 .303 .953 .987 .923 .363 .985 .992 .943 .451 .982

and that between MMEnsemble and MUEnsemble revealed that the metric learn-
ing improved the performance.

Q3: Does the asset-based weighting help improve the classification
performance? and what is the effect of choice of its hyper-parameter k
(Eq. 2)?—Asset-based weighting improved classification performance compared
with the two weighting schemes (uniform and Gaussian) for all metrics; however,
the hyper-parameter k must be carefully determined because it is sensitive to
recall. As k increases, recall decreases, while the Gmean and F2 increase. This
indicates that a higher k improves classifiers in terms of the TNR and precision.
Thus, k can be tuned in terms of users’ preferences on recall or precision.

5 Conclusion

In this paper, a novel undersampling-based ensemble framework, MMEnsemble
was proposed. MMEnsemble integrates three techniques, metric learning, multi-
ratio ensemble, and asset-based weighting to overcome the insufficient data space
issue in the previous undersampling-based ensemble approaches. An experimen-
tal evaluation revealed the superiority of MMEnsemble to the state-of-the-art
methods, especially for the recall and AUC metrics. The major limitation of
MMEnsemble (also in the other methods) is that it can achieve higher recall
scores but sacrifices precision.

Acknowledgments. This work was partly supported by JSPS KAKENHI JP21H0355
and the Kayamori Foundation of Informational Science Advancement.

• Uniform: baselins
• Gauss: Best weighting in MUEnsemble[8] (for detail, refer to the paper)

Asset-based weighting performs almost best, 
but underperforms in Rec due to precision-recall trade-off.



• Conclusion
• MMEnsemble: an ensemble framework using multi-ratio 

ensemble (MR) and metric learning (ML).
• Asset-based weighting scheme for multiple ratios.
• MMEnsemble outperforms SOTA methods.

• Future directions
• Improvement on computational efficiency
• Class imbalance problem in deep learning models

15
Conclusion and Future Directions



• Automatic rate enumeration: 
• Possible rates differ 

due to various IR on datasets

• Weighting scheme: control #base classifiers on rates
• Find well-balanced combination of rates
• Gaussian

• 𝜇 and 𝜎) are detemined by grid search. 

Rate Enumeration and Weighting Scheme
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Algorithm 1. MLEnsemble
Input: Training data D(train) = (Dmaj , Dmin), sampling ratio r, the number of weak

classifiers n
Output: Base ensemble classifier with metric learner Cr =

((c1,m1), (c2,m2), . . . , (cn,mn))
1: for i = 1 to n do

2: D′
maj ← Randomly sample Dmaj s.t.

|D′
maj |

|Dmin| = r

3: Train metric learner mi using (D′
maj , Dmin)

4: D′ ← Transform (D′
maj , Dmin) using mi

5: Train weak classifier ci using D′

6: end for

3.1 Base Ensemble Classifier – MLEnsemble

MLEnsemble is a bagging classifier with metric learning. Its procedure is sum-
marized in Algorithm 1. The training data are sampled multiple times with
replacement to obtain particular sets of instances (Line 2). For each set, a met-
ric learner is trained by using the set so that it transforms the set into a sufficient
data space for distinguishing instances of different classes (Lines 3–4). Using the
transformed set, a weak classifier is trained (Line 5).

3.2 Ensemble Using Asset-Based Weighting

Typical ensemble methods use the weighted voting strategy. These methods
often use equal weights for all base classifiers, and they are not aware of class
imbalance. In contrast, for the case of an ensemble of base classifiers in different
sampling ratios, the weights of base classifiers are more sensitive, and thus need
to be carefully designed. [8] showed that a heuristic weighting using a Gaussian
function is superior to the equal weighting. The Gaussian-based weighting is
calculated as follows.

Wgauss(r) =
1∑

r∈R Wgauss(r)
· exp

(
− (r − µ)2

2σ2

)
, (1)

where µ and σ2 are tunable parameters. When µ = 1.0, most of the weight is
on the base classifier trained using the balanced data, and the weights gradually
decrease as r increases and decrease from µ.

The heuristic weighting approach does not take the classification perfor-
mances of base classifiers into consideration. There are typically some instances
that can be correctly classified by only a few base classifiers. To improve the clas-
sification performance with the ensemble mechanism, base classifiers classifying
such instances correctly are important. Also, these base classifiers are expected
to not incorrectly classify instances that are correctly classified by the other base
classifiers. In this paper, this is called an asset of a base classifier. Formally, given
set C = {Cj}sj=1 of base classifiers with size s and validation set D(val), for each
instance (di, "i) ∈ D(val), where di is a feature vector, and "i is a class label of
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