

MMEnsemble: Imbalanced Classification Framework using Metric Learning and Multi-sampling Ratio Ensemble

Takahiro Komamizu Nagoya University Japan

This slide is downloadable from http://taka-coma.pro/pdfs/DEXA2021.pdf

Class Imbalance is Universal Phenomenon

E-mail Spam

Credit Card Fraud

Driving Behavior

- Others
 - clinical domain [5], economic domain [25], agricultural domain [28], software engineering domain [26], computer network domain [11], etc.

Classifiers suffer from Class Imbalance

- Classifiers tend to prefer majority class
 - Choosing majority (say negative) class has more chance to increase accuracy score, beacuse $\#TN \gg \#TP$

• accuracy = $\frac{\#TP + \#TN}{\#TP + \#TN + \#FP + \#FN}$

- Consider 1 positive instance and 99 negative instances
 - All negative: accuracy = 99%
 - For classifiers, it looks (almost) optimal.
- In reality, minority class is more important.
 - What if your spam filter regards all mail as non-spam?
 - What if your fraud detector rageds all as normal action?

Existing Work

- Cost-sensitive learning approach
 - Desing cost function that gives higher penalty when classifiers fail to correctly classify the minority classes.
 - Depending on classification methods.
- Data-level approach
 - Add or remove data points so that instances of classes are balanced.
 - Adding: Oversampling / Synthetic oversampling (e.g., SMOTE, SWIM)
 - Removing: Undersampling (US)
 - NOT depending on classification methods.

EasyEnsemble (EE)^[10]: ensemble multi samples

• Simple undersampling wastes major part of samples.

• EE samples multiple times so that most of samples are used in trianing an ensemble classifier.

multiple sampling w/ replacement

Existing Work

MUEnsemble^[8]: previous work

6

Existing Work

\rightarrow

US

What about feature space?

Metric Learning (ML) e.g., LMNN [19]

Learning a transformation s.t.

- samples of the same classes get closer,
- samples of the different classes get further ML also suffers from the class imbalance.
- ➔ [18] shows US + ML improves classification performance in the class imbalance data.

MMEnsemble: ensemble multiple rates w/ ML

• Overall framework is based on MUEnsemble.

Asset-based Weighting Scheme

- MUEnsemble [8] uses heuristic schemes.
- Idea: Taking classification performances of base classifiers into account
 - High weight for classifiers which can classify difficult samples
 - Easiness of sample *i* is measured by #classifiers (C_j) correctly classify.

 $T_i = \left| \{ C_j \mid C_j \in C, C_j. predict(d_i) = \ell_i \right|$

Asset-based Weighting Scheme

$$W_{asset}(r) = \frac{1}{\sum_{r \in R} W_{asset}(r)} \cdot \sum_{\substack{(d_i, \ell_i) \in D^{(val)}}} \delta (C_r.predict(d_i), \ell_i) \cdot T_i^{-k}$$

Difficulty is measured for validation set.

Research Questions in the expriment

- Q1: Does MMEnsemble outperform the state-of-the-art imbalanced classification methods of metric learning and undersampling?
- Q2: Is the combination of metric learning and multi-ratio ensemble effective?
- Q3-1: Does the asset-based weighting help improve the classification performance?
- Q3-2: and what is the effect of choice of its hyperparameter k in the asset-based weighting?
 - Refer to the paper

Datasets from OpenML / KEEL Repositories

 Selection of the datasets is same as SOTA US+ML approach (DDAE) [20].

		Nama	// we could	//	// dime	ID	_	ΓD	#major
_	ID	name	#records	#mmor	₩aim	IR	_	IR =	Harrison
OpenMI	D1	cm1	498	49	21	9.2			#minor
	D2	kc3	458	43	39	9.7			
	D3	mw1	403	31	37	12.0			
Opennic	D4	pc1	$1,\!109$	77	21	13.4			
	D5	pc3	1,563	160	37	8.8			
l	D6	pc4	$1,\!458$	178	37	7.2			
KEEL	D7	yeast1-7	459	30	7	14.3			
	D8	abalone9-18	731	42	8	16.4			
	D9	yeast6	$1,\!484$	35	8	41.4			
	D10	abalone19	$4,\!174$	32	8	129.4	:		
	D11	wine3-5	691	10	11	68.1			
	D12	abalone20	1,916	26	8	72.7			

Comparison SOTA methods

- $Gm = \sqrt{TPR \cdot TNR}$: geometric mean of true positive rate and true negative rate
- *F*₂: recall-weighted f-measure

		M	L			US+		Proposed				
Data	IML [†]	ŀ			DDAE	†			MMEnsemble			
	Rec	Gm	F_2	AUC	Rec	Gm	F_2	AUC	Rec	Gm	F_2	AUC
D1	.313	.520	.287	.589	.813	.775	.580	.776	.863	.756	.546	.819
D2	.692	.805	.652	.814	.846	.823	.625	.823	.952	.750	.534	.868
D3	.500	.635	.345	.653	.750	.815	.588	.817	.793	.772	.528	.866
D4	.852	.657	.408	.679	.963	.819	.573	.830	.944	.819	.548	.895
D5	.510	.578	.342	.582	.735	.743	.536	.744	.867	.794	.598	.854
D6	.814	.725	.574	.730	.932	.804	.676	.813	.963	.873	.748	.934
D7	.667	.716	.471	.718	.833	.841	.649	.841	.933	.808	.512	.883
D8	.600	.709	.375	.719	.700	.814	.603	.824	.886	.877	.650	.941
D9	.700	.798	.407	.805	.900	.883	.421	.883	.931	.920	.585	.976
D10	.667	.626	.037	.628	1.000	.839	.075	.852	.935	.835	.128	.876
D11	.000	.000	NA	.500	.333	.550	.156	.620	.894	.842	.188	.939
D12	.800	.802	.252	.802	1.000	.964	.556	.965	.992	.943	.451	.982

.

MMEnsemble achieves best in Rec and AUC.

Gm and F_2 are comparable, because precision is a little sacrificed.

Is the combination of ML + MR effective?

(MR = multi-ratio ensemble)

Data	MLEnsemble (EE + ML)					nseml	ole (E	E + MR)	MMEnsemble (EE + ML + MR)				
	Rec	Gm	F_2	AUC	Rec	Gm	F_2	AUC	Rec	Gm	F_2	AUC	
D1	.751	.695	.475	.754	.812	.698	.484	.783	.820	.699	.483	.783	
D2	.854	.742	.518	.831	.821	.718	.490	.826	.891	.731	.509	.862	
D3	.790	.720	.461	.817	.761	.700	.439	.820	.864	.761	.506	.860	
D4	.875	.804	.533	.871	.880	.788	.509	.860	.873	.816	.548	.885	
D5	.821	.760	.554	.821	.828	.753	.546	.828	.844	.781	.581	.837	
D6	.921	.844	.707	.907	.946	.883	.764	.934	.971	.873	.747	.921	
D7	.787	.746	.444	.830	.792	.743	.438	.818	.860	.749	.444	.859	
D8	.835	.822	.537	.913	.769	.757	.440	.840	.911	.835	.531	.959	
D9	.893	.874	.438	.951	.850	.857	.427	.935	.885	.890	.508	.973	
D10	.835	.762	.101	.828	.911	.770	.096	.834	.999	.828	.112	.887	
D11	.735	.697	.144	.797	.785	.753	.178	.841	.765	.724	.160	.795	
D12	.882	.875	.330	.951	.870	.840	.248	.931	.987	.923	.363	.985	
[↑] — Comparable — [↑]										Alm	iost l	oest	

MMEnsemble can take both advantages of MR and ML

Experiment

Weighting Scheme Comparison

- Uniform: baselins
- Gauss: Best weighting in MUEnsemble[8] (for detail, refer to the paper)

Data	Unifo	rm			Gauss	uss				Asset			
	Rec	Gm	F_2	AUC	Rec	Gm	F_2	AUC	Rec	Gm	F_2	AUC	
D1	.893	.637	.456	.781	.820	.699	.483	.783	.863	.756	.546	.819	
D2	.950	.711	.502	.818	.891	.731	.509	.862	.952	.750	.534	.868	
D3	.813	.692	.435	.815	.864	.761	.506	.860	.793	.772	.528	.866	
D4	.954	.788	.505	.891	.873	.816	.548	.885	.944	.819	.548	.895	
D5	.923	.748	.550	.840	.844	.781	.581	.837	.867	.794	.598	.854	
D6	.972	.846	.710	.925	.971	.873	.747	.921	.963	.873	.748	.934	
D7	.915	.742	.432	.882	.860	.749	.444	.859	.933	.808	.512	.883	
D8	.900	.817	.509	.931	.911	.835	.531	.959	.886	.877	.650	.941	
D9	.910	.872	.413	.954	.885	.890	.508	.973	.931	.920	.585	.976	
D10	.924	.758	.091	.837	.999	.828	.112	.887	.935	.835	.128	.876	
D11	.633	.666	.152	.810	.765	.724	.160	.795	.894	.842	.188	.939	
D12	.873	.858	.303	.953	.987	.923	.363	.985	.992	.943	.451	.982	

Asset-based weighting performs almost best, but underperforms in Rec due to precision-recall trade-off.

Conclusion and Future Directions

- Conclusion
 - MMEnsemble: an ensemble framework using multi-ratio ensemble (MR) and metric learning (ML).
 - Asset-based weighting scheme for multiple ratios.
 - MMEnsemble outperforms SOTA methods.
- Future directions
 - Improvement on computational efficiency
 - Class imbalance problem in deep learning models

Additional Contents

Rate Enumeration and Weighting Scheme

- Automatic rate enumeration:
 - Possible rates differ due to various IR on datasets

Sampling rate

- Weighting scheme: control #base classifiers on rates
 - Find well-balanced combination of rates
 - Gaussian $W_{gauss}(r) = \frac{1}{\sum_{r \in R} W_{gauss}(r)} \cdot \exp\left(-\frac{(r-\mu)^2}{2\sigma^2}\right)$ • μ and σ^2 are detemined by grid search.