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Linked Data (LD)

* Open data paradigm

» Linking facts in open data
 RDF (Resource Description Framework)

* e.g.,

o <http://airs2017.org/> dc:title “AIRS 20177 .
<http://airs2017.org/> dbo:location dbr:Jeju Province .
dbr:Jeju_Province dbo:country dbr:South Korea .
dbr:South Korea rdf:label “South Korea” .
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Search over LD

 Finding facts in LD data

« Standardized method: SPARQL query

« Graph pattern-based requirement representation
 Bindings to variables in patterns are results.

o / dbo:location
ttp://airs2017.org @ » dbr:Jeju_Province
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Keyword Search over LD

» User-friendly method: keyword search
» Keyword-based representation

 Facts related with query are results.
* e.g., related means common ancestor node

(“AIRS”, “South Korea”) » http://airs2017.org/

Keyword query Results
¢ Tttp://airs2017.0rgl"x—2CMMe 51 AIRS 2017 South Korea
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Ranking is still challenging.

* |R-based techniques are < 0.6.
» Graph analysis-based techniques are still < 0.65.
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[6] Balog, K., Neumayer, R.: A Test Collection for Entity Search in DBpedia. In: SIGIR 2013. pp. 737-740 (2013)



Objective and Approach

 Objective: Ranking quality improvement

* Approach
* ObjectRank-based ranking [4]

« Heterogeneous kinds of entities in LD
* e.g., Locations, Events, Person, etc.
* More flexible than PageRank

 Different relationships b/w entity types can have different
authority transfer rates.

« Appropriate rates lead good ranking results [4].

* |ssue
« Appropriate setting of authority transfer rates.

[4] Balmin, A., Hristidis, V., Papakonstantinou, Y.: ObjectRank: Authority-Based Keyword Search in
Databases. In: VLDB 2004. pp. 564-575 (2004)



Graphs in ObjectRank [4]
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[4] Balmin, A., Hristidis, V., Papakonstantinou, Y.: ObjectRank: Authority-Based Keyword Search in
Databases. In: VLDB 2004. pp. 564-575 (2004)



Calculation in ObjectRank [4]

Global ObjectRank Query-specific ObjectRank
(Precomputed) (Compute when query comes)
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Overall ObjectRank scores for given query g
(u is weighing parameter)
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[4] Balmin, A., Hristidis, V., Papakonstantinou, Y.: ObjectRank: Authority-Based Keyword Search in
Databases. In: VLDB 2004. pp. 564-575 (2004)
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How to apply ObjectRank?

1. Schema graph construction

SELECT distinct ?class ASK{?s ?predicate ?d.
WHERE{?s rdf:type ?class} ?s rdf:type <cl>. ?d rdf:type <c2>.}
Vertices Edges

2. Data graph construction

SELECT distinct ?s 2d
WHERE{?s ?predicate ?d. ?s rdf:type <cl>. ?d rdf:type <c2>.}

Vertices and edges

3. Calculate ObjectRank scores



Weights on the Graphs

* No evidential design principle

 Design principle of graphs in ObjectRank is highly
dependent on application scenario.

« No research has clear principle for design principle
for keyword search on LD.

* |deal weights are hardly defined.
=» Heuristic determination is reasonable.



Proposed Weight Learning

Idea: employing human judgements on search results

» Approach: relevance feedback
* Input: relevance judgements on (top-k) search results

 Output: modified edge weights on schema graph
 Afterward, ObjectRank scores are re-calculated.

 Process
1. Map judgements to classes of result entities.
» Entities of same classes are also relevant.

2. Modify weights (authority transfer rates) according
to the judgements



Weight Modification

Relevant classes

lf]@ ”’CLCZ‘@ Decrease weights for outgoing edges.
=» leak less authority

@ "’”'Cﬁ@ﬂy Increase weights for incoming edges.
=>» gain more authority

Non-relevant classes

() wc””ﬁ@ Increase weights for outgoing edges.
=» leak more authority

@ ”’CLC?‘»@(J) Decrease weights for incoming edges.
=>» gain less authority




FORK: overall architecture
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 Entity Documentization: prepare for keyword matching

SELECT ?value
WHERE { <entity> 7?7predicate ?value.
FILTER(isLiteral(?value)) }



Experimental Evaluation

* Objective
» Check if FORK successfully learns the weights.
« Compare ranking quality with existing works.

» Dataset
« Data: DBpedia 3.9

 Entity search benchmark [6]
« 61 keyword search queries are selected.
« Answer entity list for each query.

 Measurement: Precision@10
« Comparable with the benchmark results

[6] Balog, K., Neumayer, R.: A Test Collection for Entity Search in DBpedia. In: SIGIR 2013. pp. 737-740 (2013)



Simulated Relevance Feedback

« Assumption
» During a query, users do not change their mind.

* Procedure
1. Given a query, FORK provides top-k answer list.

2. Correct answers in the list are set to relevant,
non-relevant otherwise.

3. FORK learns weights and re-calculate the top-k
answer list.

4. Continue 2-3.



FORK improves Ranking.

* Observe accuracy change over feedbacks.
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Best-learnt ObjectRank is the best.
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Conclusion and Future Work

* FORK

» ObjectRank-based keyword search over LD
* Relevance feedback-based authority transfer
weights learning
* Experiments
* Ensure weights are learnt properly.
 Best-learnt ObjectRank achieves the best accuracy.

 Future work

« Employing keyword-based relevance feedback [20]
for further improvement.

]20] Varadarajan, R., Hristidis, V., Raschid, L.: Explaining and Reformulating Authority Flow Queries.
In: ICDE 2008. pp. 883—892 (2008)



