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Linked Data (LD)

• Open data paradigm
• Linking facts in open data
• RDF (Resource Description Framework)
• e.g., 

• <http://airs2017.org/>  dc:title “AIRS 2017” .
<http://airs2017.org/>  dbo:location dbr:Jeju_Province .
dbr:Jeju_Province dbo:country dbr:South_Korea .
dbr:South_Korea rdf:label “South Korea” .

Linked Open Data cloud
diagram (2014-08)
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Search over LD

• Finding facts in LD data
• Standardized method: SPARQL query
• Graph pattern-based requirement representation
• Bindings to variables in patterns are results.

http://airs2017.org/ ?x
dbo:location x

dbr:Jeju_Province
Graph pattern query Results
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Keyword Search over LD

• User-friendly method: keyword search
• Keyword-based representation
• Facts related with query are results.

• e.g., related means common ancestor node

(“AIRS”, “South Korea”)
Keyword query Results

http://airs2017.org/

http://airs2017.org/ AIRS 2017dc:title
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Ranking is still challenging.

• IR-based techniques are < 0.6.
• Graph analysis-based techniques are still < 0.65.

[6] Balog, K., Neumayer, R.: A Test Collection for Entity Search in DBpedia. In: SIGIR 2013. pp. 737–740 (2013) 

Benchmark results [6]



Objective and Approach

• Objective: Ranking quality improvement
• Approach
• ObjectRank-based ranking [4]

• Heterogeneous kinds of entities in LD
• e.g., Locations, Events, Person, etc.

• More flexible than PageRank
• Different relationships b/w entity types can have different 

authority transfer rates.
• Appropriate rates lead good ranking results [4].

• Issue
• Appropriate setting of authority transfer rates.

[4] Balmin, A., Hristidis, V., Papakonstantinou, Y.: ObjectRank: Authority-Based Keyword Search in
Databases. In: VLDB 2004. pp. 564–575 (2004) 



Graphs in ObjectRank [4]

[4] Balmin, A., Hristidis, V., Papakonstantinou, Y.: ObjectRank: Authority-Based Keyword Search in
Databases. In: VLDB 2004. pp. 564–575 (2004) 
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Calculation in ObjectRank [4]

[4] Balmin, A., Hristidis, V., Papakonstantinou, Y.: ObjectRank: Authority-Based Keyword Search in
Databases. In: VLDB 2004. pp. 564–575 (2004) 
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niques. Based on relevance judgements from users for results, the algorithm
makes the authority transfer weights closer to the users’ expectations.

2 ObjectRank: Preliminary

ObjectRank [4] requires two graph data, namely, authority transfer schema graph
(or schema graph) and authority transfer data graph (or data graph). In the Ob-
jectRank setting, a dataset contains set C of data types (or classes) of objects.
Schema graph models relationships between classes. On schema graph, the ver-
tices represent classes, the edges represent directed relationships between classes,
and each edge is weighted for transferring authority from source to destination.

A data graph is derived from the schema graph by mapping weights onto
graphs consisting of objects of classes and relationships between objects. For an
edge e which source vertex src 2 Oc (where Ox denotes a set of objects of class
x) belongs to class c and destination vertex dst 2 Od belongs to class d, the
weight wsrc,dst of edge (src, dst) is calculated as follows:

wsrc,dst =
WS((c, d))

outdeg(src, d)
(1)

where WS((c, d)) returns the weight of an edge between classes c and d in schema
graph, and outdeg(src, d) function returns the number of outgoing edges from
src and destination vertices of the edges are of class d.

From a data graph, authority scores of objects are calculated as analogous to
PageRank. In ObjectRank, two sorts of authorities (i.e., global ObjectRank and
query-specific ObjectRank) are computed in order to evaluate both topological
authorities and query-centric authorities.

r(t+1)
g = dAr(t)g +

1� d

|O| e (2) r(t+1)
q = dAr(t)q +

1� d

|S(q)|s (3)

Global ObjectRank is iteratively calculated as Eq. 2, where r(t)g is an authority
vector of objects in t-th iteration, A is a |O|⇥ |O| adjacency matrix composing of
weights between objects in data graph, d is a dumping factor balancing authority
transitivity in the graph and random-jump, and e is a vector of all 1 with length
|O|. Query-specific ObjectRank is iteratively calculated as Eq. 3, where r(t)q is an
authority vector of objects in t-th iteration, S(q) is a set of vertices which meet
with query q, and s is a vector of 1 for vertices matching with q, 0 otherwise.

Overall ObjectRank score r for given query q is weighted combination of the
global and query-specific authorities. The combination is formulated as Eq. 4
where u is an adjustable parameter of effects of query-specific authorities, and �
represents Hadamard product (or element-wise multiplication).

r = rg � (rq)u (4)

Formally, in consequence, ObjectRank computation is defined as Definition 1.
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Global ObjectRank
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Query-specific ObjectRank
(Compute when query comes)
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How to apply ObjectRank?

1. Schema graph construction

2. Data graph construction

3. Calculate ObjectRank scores 
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3.2 Authority Transfer Graph Generation

A schema graph consists of classes (or types) of entities, relationship between
classes and authority transfer weights between classes. They are derived in the
following three steps. Step 1: Set C of classes is extracted by the SPARQL query
in Listing 1.2. Step 2: Set ES of edges between classes are extracted as far as
there are edges between objects of the classes with SPARQL query in Listing 1.3
where c1 and c2 are classes in C.

SELECT distinct ?class
WHERE{?s rdf:type ?class}

Listing 1.2: Listing classes.

ASK{?s ?predicate ?d.
?s rdf:type <c1>. ?d rdf:type <c2>.}

Listing 1.3: Presence of edges.

Step 3: Authority transfer weights WS on schema graph are initialized with
random values, due to the absence of proper criteria to set the weights.

A data graph is composed of objects (or entities), and authority transfer
weights between entities. Entities and edges corresponding with classes are ex-
tracted by Listing 1.4 where c1 and c2 are connected classes on the schema
graph. As a result of the query, the variables ?s and ?d in the query gives set O
of objects and set EO of edges between objects, simultaneously.

SELECT distinct ?s ?d
WHERE{?s ?predicate ?d. ?s rdf:type <c1>. ?d rdf:type <c2>.}

Listing 1.4: Objects corresponding with schema graph.

As Eq. 1, the weights WD on data graph are derived from schema graph based
on degrees of each object.

3.3 Authority Transfer Weight Learning

Link-structure analysis algorithms give higher scores to vertices which random
surfers arrive with high probability. A vertex having many in-coming edges with
high authority transfer weights receives large amount of authorities from other
vertices, therefore it obtains high score. On the other hand, a vertex having
many out-going edges with high authority transfer weights supplies most of its
authority to the connected vertices, therefore, it obtains low score.

The key idea in this paper is classes of objects with positive feedbacks should
receive more authority and leak less authority, while those with negative feed-
backs should supply more authority and receive less authority. The aforemen-
tioned facts indicate that if a vertex should obtain high score, it should have
in-coming edges with high authority transfer weights and out-going edges with
low authority transfer weights. While, if a vertex should obtain low score, it
should have in-coming edges with low authority transfer weights and out-going
edges with high authority transfer weights. Fig. 2 overviews individual mech-
anisms for modifying weights on schema graph. The above figures represent
an edge between classes, C1 (source vertex) and C2 (destination vertex), with
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Weights on the Graphs

• No evidential design principle
• Design principle of graphs in ObjectRank is highly 

dependent on application scenario.
• No research has clear principle for design principle 

for keyword search on LD. 
• Ideal weights are hardly defined.
è Heuristic determination is reasonable.



Proposed Weight Learning

• Approach: relevance feedback
• Input: relevance judgements on (top-k) search results
• Output: modified edge weights on schema graph

• Afterward, ObjectRank scores are re-calculated.

• Process
1. Map judgements to classes of result entities.

• Entities of same classes are also relevant. 
2. Modify weights (authority transfer rates) according 

to the judgements

Idea: employing human judgements on search results



Weight Modification

C1 C2
wC1, C2

C1 C2
wC1, C2

C1 C2
wC1, C2

C1 C2
wC1, C2

Increase weights for incoming edges.

Decrease weights for incoming edges.

Relevant classes

Decrease weights for outgoing edges.

Increase weights for outgoing edges.

Non-relevant classes

è leak less authority

è gain more authority

è leak more authority

è gain less authority



FORK: overall architecture

• Entity Documentization: prepare for keyword matching

Entity
Documentization

LD	dataset

Document	DB

Global	
ObjectRank
Computation

Query-specific	
ObjectRank
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Query

ObjectRank
Computation

Authority	 Transfer	
Graphs

Authority	
Transfer	Graph
Generation

Top-k	Ranked	
Entities

Relevance
Feedbacks

Authority
Transfer	Weight	

Learning

Pre-processing	phase On-demand	phase
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Fig. 1: Overview of FORK.

Definition 1 (ObjectRank computation). Given data graph DG and a key-
word query q, ObjectRank values for q on DG are calculated Eq. 4 by combination
of global and query-specific ObjectRank computations as in Eq. 2 and Eq. 3 based
on an adjacency matrix A derived from DG. ⇤

3 FORK: Proposed Method

Fig. 1 draws an overview of FORK, where white-colored objects are given in
advance (i.e., datasets and storages) or by users (queries and feedbacks) and
gray-colored objects are processes. The procedure of FORK can be divided into
two phases, namely, pre-processing phase and on-demand phase. The former
phase processes given LD datasets to prepare for ranking entities by ObjectRank
scores. The pre-processing phase includes three processes, namely, entity docu-
mentization, authority transfer graph generation, and global ObjectRank com-
putation. The latter phase computes rankings of entities for given user queries
and modifies authority transfer graphs based on users’ relevance judgements for
the ranking results. The on-demand phase consists of three processes, namely,
query-specific ObjectRank computation, ObjectRank computation, and authority
transfer weight learning. The subsequent sections introduce entity documenti-
zation in Section 3.1, authority transfer graph generation in Section 3.2, and
authority transfer weight learning in Section 3.3.

3.1 Entity Documentization

This paper employs a reasonable documentization technique by Sinha et al. [19].
They represent an object by concatenation of surrounding attributes and their
values as a document. This paper applies this idea for LD datasets to documen-
tize entities. The following SPARQL query provides a document of an entity (by
specifying on the placeholder “<entity>”).

SELECT ?value
WHERE { <entity> ?predicate ?value.

FILTER(isLiteral(?value)) }

Listing 1.1: SPARQL query for documentization.



Experimental Evaluation

• Objective
• Check if FORK successfully learns the weights.
• Compare ranking quality with existing works.

• Dataset
• Data: DBpedia 3.9
• Entity search benchmark [6]

• 61 keyword search queries are selected.
• Answer entity list for each query.

• Measurement: Precision@10
• Comparable with the benchmark results

[6] Balog, K., Neumayer, R.: A Test Collection for Entity Search in DBpedia. In: SIGIR 2013. pp. 737–740 (2013) 



Simulated Relevance Feedback

• Assumption
• During a query, users do not change their mind.

• Procedure
1. Given a query, FORK provides top-k answer list.
2. Correct answers in the list are set to relevant,

non-relevant otherwise.
3. FORK learns weights and re-calculate the top-k

answer list.
4. Continue 2-3.



FORK improves Ranking.

• Observe accuracy change over feedbacks.



Best-learnt ObjectRank is the best.

Random weights



Conclusion and Future Work

• FORK
• ObjectRank-based keyword search over LD
• Relevance feedback-based authority transfer 

weights learning
• Experiments
• Ensure weights are learnt properly.
• Best-learnt ObjectRank achieves the best accuracy.

• Future work
• Employing keyword-based relevance feedback [20] 

for further improvement.
]20] Varadarajan, R., Hristidis, V., Raschid, L.: Explaining and Reformulating Authority Flow Queries. 

In: ICDE 2008. pp. 883–892 (2008) 


