

Improving Entity Linking by Modeling Latent Relations between Mentions

Phong Le¹ and Ivan Titov^{1,2} ¹University of Edinburgh ²University of Amsterdam

紹介者: 駒水 孝裕(名古屋大学)

- 問題: Entity Linking
- •従来:ヒューリスティクス,教師あり学習
- 課題:教師なしでEntity Linkingの実現
- ・手法:1.関係を隠れ変数として導入
 - 2. 複数の関係を考慮することで 多様な関係を表現
- 実験: AIDA-CoNLLデータセットで 最新研究と比較
- ・結果:1. 最新研究よりも精度向上
 - 2. 複数の関係の導入が精度に貢献

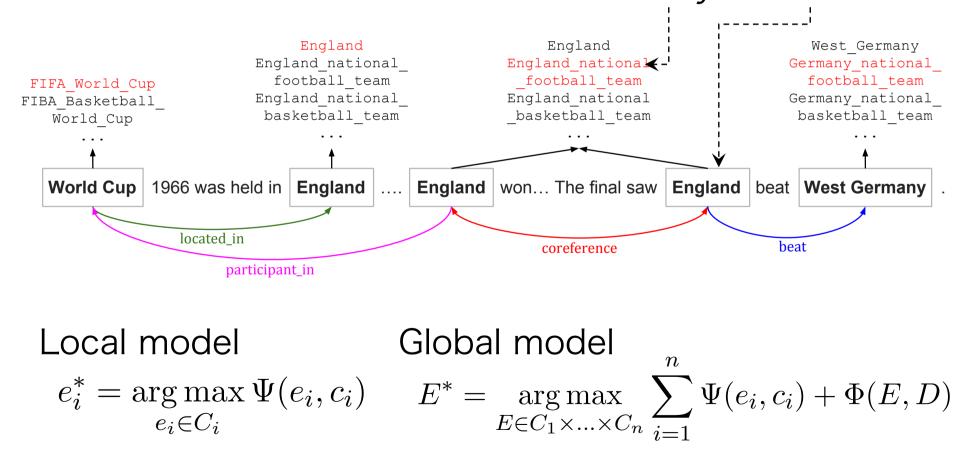
beat

図は論文からの引用

entity mention

Entity Linking

- Given: 文書D, D内の mentions $\{m_i\}_{i=0}^N$
- Find : entities $\{e_i\}_{i=0}^N$



$$E^* = \underset{E \in C_1 \times \dots \times C_n}{\operatorname{arg\,max}} \sum_{i=1}^n \Psi(e_i, c_i) + \Phi(E, D)$$

- mention間の関係
 - coreference:2つのmentionが同じentityを指示
 - それ以外の関係
 - Cheng and Roth (2013), Ren et al. (2017), など
 - 人手で作成したルールに基づいてentity間の関係を定義
 - 関係抽出自体が難しいタスクなので、ほとんどない
- •表現学習
 - コンテキストの表現とentityの表現の関連性
 - feature engineeringから発展
 - entityに対応するWikipediaのページタイトルの 単語ベクトルのコサイン類似度
 - 各表現の学習とその間の"単一の"関連性の学習 $\Phi(e_i, e_j, D) = \frac{1}{n-1} \mathbf{e}_i^T \mathbf{R} \mathbf{e}_j$

提案手法:multi-relational model

•エンティティ間の関連性

$$E^* = \underset{E \in C_1 \times \dots \times C_n}{\operatorname{arg\,max}} \sum_{i=1}^n \Psi(e_i, c_i) + \Phi(E, D)$$

・ K個の潜在的な関係の和で表現

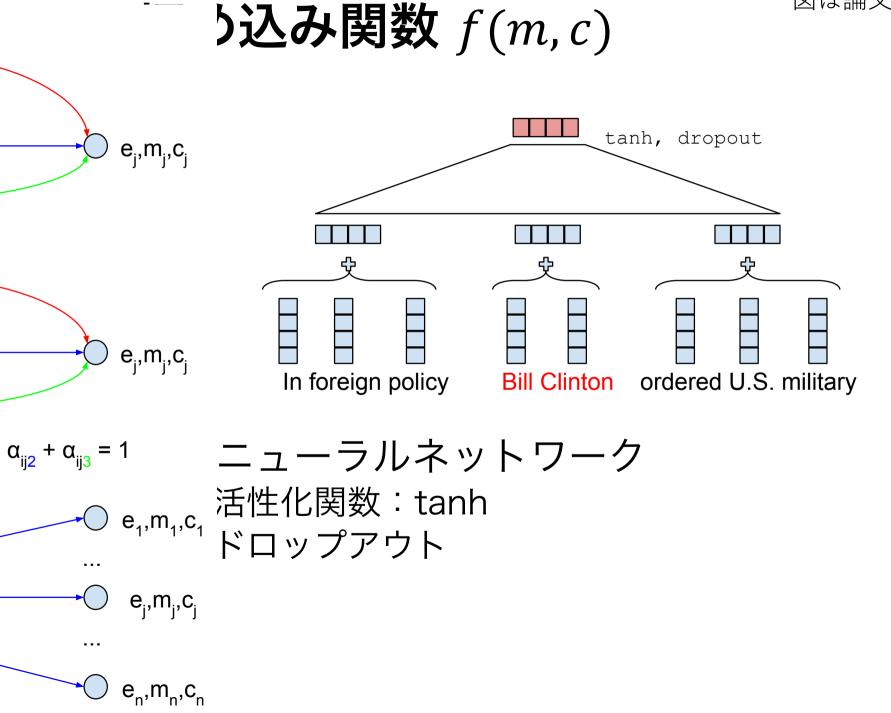
$$\Phi(e_i, e_j, D) = \sum_{k=1}^{K} \alpha_{ijk} \Phi_k(e_i, e_j, D)$$

確信度 k 番目の関連性に
基づくスコア

$$\alpha_{ijk} = \frac{1}{Z_{ijk}} \exp\left\{\frac{f^T(m_i, c_i)\mathbf{D}_k f(m_j, c_j)}{\sqrt{d}}\right\}$$

- *f*(*m*,*c*): mention *m* とコンテキスト *c* を 埋め込む関数
- **D**_k: ベクトル成分の重みを表現する対角行列
- d: 埋め込むベクトル空間の次元数
- Z_{ijl} (general form) $\alpha_{ij1} \Phi_1(e_i, e_j, D)$ e_i, m_i, c_i $\alpha_{ij2} \Phi_2(e_i, e_j, D)$ e_j, m_j, c_j

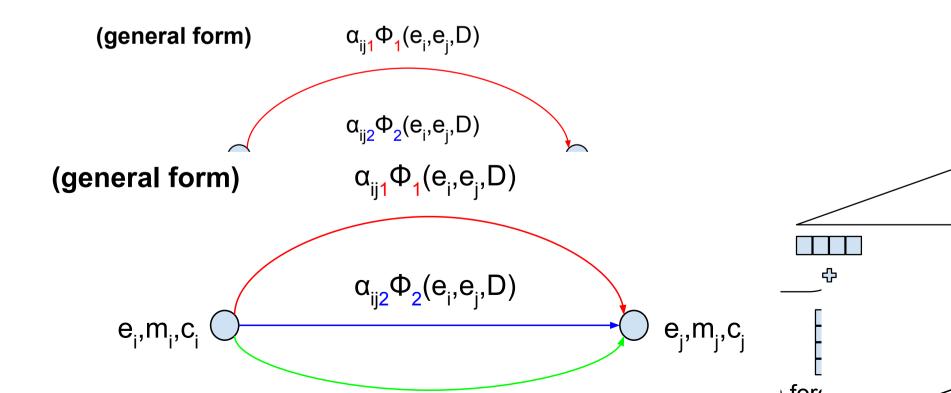
図は論文からの引用

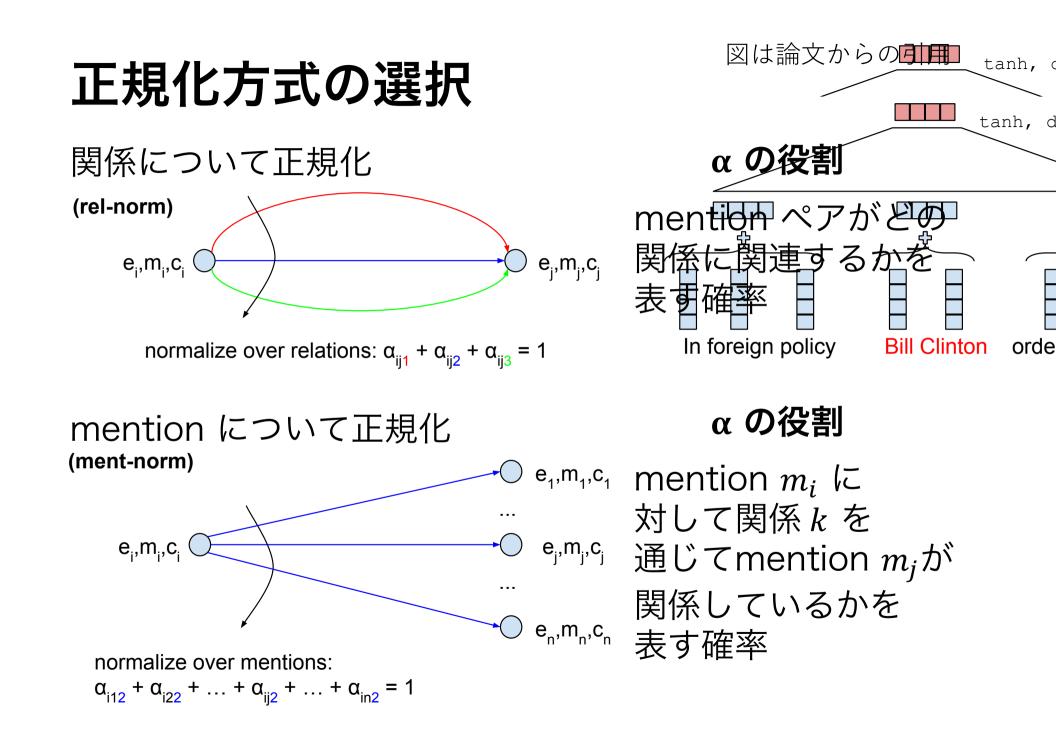


図は論文からの引用

正規化項

$$\alpha_{ijk} = \frac{1}{Z_{ijk}} \exp\left\{\frac{f^T(m_i, c_i)\mathbf{D}_k f(m_j, c_j)}{\sqrt{d}}\right\}$$





- Entity Linkingの精度を評価
- •比較手法
 - ・提案手法 (rel-norm) ← 正規化手法の比較
 - ・提案手法 (ment-norm)
 - ・提案手法 (ment-norm (no pad))→ 工夫の効果検証
 - ・提案手法 (ment-norm (K=1)) ← 複数関連の効果検証
 - 既存手法
- 設定
 - ・データセット:AIDA-CoNLL
 - 評価指標: F1のマイクロ平均(5回, 95%信頼区間)
 - 潜在関連数:6 (rel-norm), 3 (ment-norm)
 - ・ 実験的に決定

Methods	Aida-B	
Chisholm and Hachey (2015)	88.7	
Guo and Barbosa (2016)	89.0	
Globerson et al. (2016)	91.0	
Yamada et al. (2016)	91.5	ment-norm が
Ganea and Hofmann (2017)	92.22 ± 0.14	/ rel-norm より良い
rel-norm	92.41 ± 0.19	
ment-norm	93.07 ± 0.27 ≰	
ment-norm $(K = 1)$	$92.89 \pm 0.21 \bigstar$	
ment-norm (no pad)	92.37 ± 0.26	∖複数の潜在関連を
		取り入れることが良い

- ・提案手法 (ment-norm) が最良
- 計算量的には既存手法より高いが 収束が早いので問題にはならない

まとめ

- 問題: Entity Linking
- •従来:ヒューリスティクス,教師あり学習
- 課題:教師なしでEntity Linkingの実現
- ・手法:1.関係を隠れ変数として導入
 - 2. 複数の関係を考慮することで 多様な関係を表現
- 実験: AIDA-CoNLLデータセットで 最新研究と比較
- ・結果:1. 最新研究よりも精度向上

2. 複数の関係の導入が精度に貢献