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概要
•問題：Entity Linking
•従来：ヒューリスティクス，教師あり学習
•課題：教師なしでEntity Linkingの実現
•手法：

•実験：AIDA-CoNLLデータセットで
最新研究と比較

•結果：

1. 関係を隠れ変数として導入
2. 複数の関係を考慮することで
多様な関係を表現

1. 最新研究よりも精度向上
2. 複数の関係の導入が精度に貢献



Entity Linking
• Given: 文書𝐷, 𝐷内の mentions 𝑚# #$%

&

• Find  : entities 𝑒# #$%&
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Figure 1: Example for NEL, linking each mention to an entity in a KB (e.g. “World Cup” to
FIFA WORLD CUP rather than FIBA BASKETBALL WORLD CUP). Note that the first and the sec-
ond “England” are in different relations to “World Cup”.

improvement of 0.85% F1 over the best re-
ported scores on the standard AIDA-CoNLL
dataset (Ganea and Hofmann, 2017). Substan-
tial improvements over the relation-agnostic ver-
sion show that the induced relations are indeed
beneficial for NEL. Surprisingly its training also
converges much faster: training of the full model
requires ten times shorter wall-clock time than
what is needed for estimating the simpler relation-
agnostic version. This may suggest that the in-
jected structural bias helps to explain regularities
in the training data, making the optimization task
easier. We qualitatively examine induced rela-
tions. Though we do not observe direct counter-
parts of linguistic relations, we, for example, see
that some of the induced relations are closely re-
lated to coreference whereas others encode forms
of semantic relatedness between the mentions.

2 Background and Related work

2.1 Named entity linking problem

Formally, given a document D containing a list of
mentions m1, ...,mn, an entity linker assigns to
each mi an KB entity ei or predicts that there is no
corresponding entry in the KB (i.e., ei = NILL).

Because a KB can be very large, it is stan-
dard to use an heuristic to choose potential can-
didates, eliminating options which are highly un-
likely. This preprocessing step is called candidate
selection. The task of a statistical model is thus re-
duced to choosing the best option among a smaller
list of candidates Ci = (ei1, ..., eili). In what fol-
lows, we will discuss two classes of approaches
tackling this problem: local and global modeling.

2.2 Local and global models
Local models rely only on local contexts of men-
tions and completely ignore interdependencies be-
tween the linking decisions in the document (these
interdependencies are usually referred to as coher-
ence). Let ci be a local context of mention mi and
Ψ(ei, ci) be a local score function. A local model
then tackles the problem by searching for

e∗i = argmax
ei∈Ci

Ψ(ei, ci) (1)

for each i ∈ {1, ..., n} (Bunescu and Paşca, 2006;
Lazic et al., 2015; Yamada et al., 2017).

A global model, besides using local context
within Ψ(ei, ci), takes into account entity co-
herency. It is captured by a coherence score func-
tion Φ(E,D):

E∗ = argmax
E∈C1×...×Cn

n∑

i=1

Ψ(ei, ci) + Φ(E,D)

where E = (e1, ..., en). The coherence score
function, in the simplest form, is a sum over
all pairwise scores Φ(ei, ej , D) (Ratinov et al.,
2011; Huang et al., 2015; Chisholm and Hachey,
2015; Ganea et al., 2016; Guo and Barbosa, 2016;
Globerson et al., 2016; Yamada et al., 2016), re-
sulting in:

E∗ = argmax
E∈C1×...×Cn

n∑

i=1

Ψ(ei, ci)+

∑

i ̸=j

Φ(ei, ej , D) (2)

A disadvantage of global models is that exact
decoding (Equation 2) is NP-hard (Wainwright
et al., 2008). Ganea and Hofmann (2017) over-
come this using loopy belief propagation (LBP),

mentionentity
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improvement of 0.85% F1 over the best re-
ported scores on the standard AIDA-CoNLL
dataset (Ganea and Hofmann, 2017). Substan-
tial improvements over the relation-agnostic ver-
sion show that the induced relations are indeed
beneficial for NEL. Surprisingly its training also
converges much faster: training of the full model
requires ten times shorter wall-clock time than
what is needed for estimating the simpler relation-
agnostic version. This may suggest that the in-
jected structural bias helps to explain regularities
in the training data, making the optimization task
easier. We qualitatively examine induced rela-
tions. Though we do not observe direct counter-
parts of linguistic relations, we, for example, see
that some of the induced relations are closely re-
lated to coreference whereas others encode forms
of semantic relatedness between the mentions.

2 Background and Related work

2.1 Named entity linking problem

Formally, given a document D containing a list of
mentions m1, ...,mn, an entity linker assigns to
each mi an KB entity ei or predicts that there is no
corresponding entry in the KB (i.e., ei = NILL).

Because a KB can be very large, it is stan-
dard to use an heuristic to choose potential can-
didates, eliminating options which are highly un-
likely. This preprocessing step is called candidate
selection. The task of a statistical model is thus re-
duced to choosing the best option among a smaller
list of candidates Ci = (ei1, ..., eili). In what fol-
lows, we will discuss two classes of approaches
tackling this problem: local and global modeling.

2.2 Local and global models
Local models rely only on local contexts of men-
tions and completely ignore interdependencies be-
tween the linking decisions in the document (these
interdependencies are usually referred to as coher-
ence). Let ci be a local context of mention mi and
Ψ(ei, ci) be a local score function. A local model
then tackles the problem by searching for

e∗i = argmax
ei∈Ci

Ψ(ei, ci) (1)

for each i ∈ {1, ..., n} (Bunescu and Paşca, 2006;
Lazic et al., 2015; Yamada et al., 2017).

A global model, besides using local context
within Ψ(ei, ci), takes into account entity co-
herency. It is captured by a coherence score func-
tion Φ(E,D):

E∗ = argmax
E∈C1×...×Cn

n∑

i=1

Ψ(ei, ci) + Φ(E,D)

where E = (e1, ..., en). The coherence score
function, in the simplest form, is a sum over
all pairwise scores Φ(ei, ej , D) (Ratinov et al.,
2011; Huang et al., 2015; Chisholm and Hachey,
2015; Ganea et al., 2016; Guo and Barbosa, 2016;
Globerson et al., 2016; Yamada et al., 2016), re-
sulting in:

E∗ = argmax
E∈C1×...×Cn

n∑

i=1

Ψ(ei, ci)+

∑

i ̸=j

Φ(ei, ej , D) (2)

A disadvantage of global models is that exact
decoding (Equation 2) is NP-hard (Wainwright
et al., 2008). Ganea and Hofmann (2017) over-
come this using loopy belief propagation (LBP),

Local model
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improvement of 0.85% F1 over the best re-
ported scores on the standard AIDA-CoNLL
dataset (Ganea and Hofmann, 2017). Substan-
tial improvements over the relation-agnostic ver-
sion show that the induced relations are indeed
beneficial for NEL. Surprisingly its training also
converges much faster: training of the full model
requires ten times shorter wall-clock time than
what is needed for estimating the simpler relation-
agnostic version. This may suggest that the in-
jected structural bias helps to explain regularities
in the training data, making the optimization task
easier. We qualitatively examine induced rela-
tions. Though we do not observe direct counter-
parts of linguistic relations, we, for example, see
that some of the induced relations are closely re-
lated to coreference whereas others encode forms
of semantic relatedness between the mentions.

2 Background and Related work

2.1 Named entity linking problem

Formally, given a document D containing a list of
mentions m1, ...,mn, an entity linker assigns to
each mi an KB entity ei or predicts that there is no
corresponding entry in the KB (i.e., ei = NILL).

Because a KB can be very large, it is stan-
dard to use an heuristic to choose potential can-
didates, eliminating options which are highly un-
likely. This preprocessing step is called candidate
selection. The task of a statistical model is thus re-
duced to choosing the best option among a smaller
list of candidates Ci = (ei1, ..., eili). In what fol-
lows, we will discuss two classes of approaches
tackling this problem: local and global modeling.

2.2 Local and global models
Local models rely only on local contexts of men-
tions and completely ignore interdependencies be-
tween the linking decisions in the document (these
interdependencies are usually referred to as coher-
ence). Let ci be a local context of mention mi and
Ψ(ei, ci) be a local score function. A local model
then tackles the problem by searching for

e∗i = argmax
ei∈Ci

Ψ(ei, ci) (1)

for each i ∈ {1, ..., n} (Bunescu and Paşca, 2006;
Lazic et al., 2015; Yamada et al., 2017).

A global model, besides using local context
within Ψ(ei, ci), takes into account entity co-
herency. It is captured by a coherence score func-
tion Φ(E,D):

E∗ = argmax
E∈C1×...×Cn

n∑

i=1

Ψ(ei, ci) + Φ(E,D)

where E = (e1, ..., en). The coherence score
function, in the simplest form, is a sum over
all pairwise scores Φ(ei, ej , D) (Ratinov et al.,
2011; Huang et al., 2015; Chisholm and Hachey,
2015; Ganea et al., 2016; Guo and Barbosa, 2016;
Globerson et al., 2016; Yamada et al., 2016), re-
sulting in:

E∗ = argmax
E∈C1×...×Cn

n∑

i=1

Ψ(ei, ci)+

∑

i ̸=j

Φ(ei, ej , D) (2)

A disadvantage of global models is that exact
decoding (Equation 2) is NP-hard (Wainwright
et al., 2008). Ganea and Hofmann (2017) over-
come this using loopy belief propagation (LBP),

Global model

図は論⽂からの引⽤



既存手法
• mention間の関係
• coreference：2つのmentionが同じentityを指示
• それ以外の関係

• Cheng and Roth (2013), Ren et al. (2017), など
• 人手で作成したルールに基づいてentity間の関係を定義

• 関係抽出自体が難しいタスクなので，ほとんどない

•表現学習
• コンテキストの表現とentityの表現の関連性
• feature engineeringから発展

• entityに対応するWikipediaのページタイトルの
単語ベクトルのコサイン類似度

• 各表現の学習とその間の“単一の”関連性の学習
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improvement of 0.85% F1 over the best re-
ported scores on the standard AIDA-CoNLL
dataset (Ganea and Hofmann, 2017). Substan-
tial improvements over the relation-agnostic ver-
sion show that the induced relations are indeed
beneficial for NEL. Surprisingly its training also
converges much faster: training of the full model
requires ten times shorter wall-clock time than
what is needed for estimating the simpler relation-
agnostic version. This may suggest that the in-
jected structural bias helps to explain regularities
in the training data, making the optimization task
easier. We qualitatively examine induced rela-
tions. Though we do not observe direct counter-
parts of linguistic relations, we, for example, see
that some of the induced relations are closely re-
lated to coreference whereas others encode forms
of semantic relatedness between the mentions.

2 Background and Related work

2.1 Named entity linking problem

Formally, given a document D containing a list of
mentions m1, ...,mn, an entity linker assigns to
each mi an KB entity ei or predicts that there is no
corresponding entry in the KB (i.e., ei = NILL).

Because a KB can be very large, it is stan-
dard to use an heuristic to choose potential can-
didates, eliminating options which are highly un-
likely. This preprocessing step is called candidate
selection. The task of a statistical model is thus re-
duced to choosing the best option among a smaller
list of candidates Ci = (ei1, ..., eili). In what fol-
lows, we will discuss two classes of approaches
tackling this problem: local and global modeling.

2.2 Local and global models
Local models rely only on local contexts of men-
tions and completely ignore interdependencies be-
tween the linking decisions in the document (these
interdependencies are usually referred to as coher-
ence). Let ci be a local context of mention mi and
Ψ(ei, ci) be a local score function. A local model
then tackles the problem by searching for

e∗i = argmax
ei∈Ci

Ψ(ei, ci) (1)

for each i ∈ {1, ..., n} (Bunescu and Paşca, 2006;
Lazic et al., 2015; Yamada et al., 2017).

A global model, besides using local context
within Ψ(ei, ci), takes into account entity co-
herency. It is captured by a coherence score func-
tion Φ(E,D):

E∗ = argmax
E∈C1×...×Cn

n∑

i=1

Ψ(ei, ci) + Φ(E,D)

where E = (e1, ..., en). The coherence score
function, in the simplest form, is a sum over
all pairwise scores Φ(ei, ej , D) (Ratinov et al.,
2011; Huang et al., 2015; Chisholm and Hachey,
2015; Ganea et al., 2016; Guo and Barbosa, 2016;
Globerson et al., 2016; Yamada et al., 2016), re-
sulting in:

E∗ = argmax
E∈C1×...×Cn

n∑

i=1

Ψ(ei, ci)+

∑

i ̸=j

Φ(ei, ej , D) (2)

A disadvantage of global models is that exact
decoding (Equation 2) is NP-hard (Wainwright
et al., 2008). Ganea and Hofmann (2017) over-
come this using loopy belief propagation (LBP),
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an approximate inference method based on mes-
sage passing (Murphy et al., 1999). Globerson
et al. (2016) propose a star model which approxi-
mates the decoding problem in Equation 2 by ap-
proximately decomposing it into n decoding prob-
lems, one per each ei.

2.3 Related work

Our work focuses on modeling pairwise score
functions Φ and is related to previous approaches
in the two following aspects.

Relations between mentions
A relation widely used by NEL systems is corefer-
ence: two mentions are coreferent if they refer to
the same entity. Though, as we discussed in Sec-
tion 1, other linguistic relations constrain entity as-
signments, only a few approaches (e.g., Cheng and
Roth (2013); Ren et al. (2017)), exploit any rela-
tions other than coreference. We believe that the
reason for this is that predicting and selecting rel-
evant (often semantic) relations is in itself a chal-
lenging problem.

In Cheng and Roth (2013), relations between
mentions are extracted using a labor-intensive ap-
proach, requiring a set of hand-crafted rules and a
KB containing relations between entities. This ap-
proach is difficult to generalize to languages and
domains which do not have such KBs or the set-
tings where no experts are available to design the
rules. We, in contrast, focus on automating the
process using representation learning.

Most of these methods relied on relations pre-
dicted by external tools, usually a coreference sys-
tem. One notable exception is Durrett and Klein
(2014): they use a joint model of entity linking and
coreference resolution. Nevertheless their corefer-
ence component is still supervised, whereas our
relations are latent even at training time.

Representation learning
How can we define local score functions Ψ and
pairwise score functions Φ? Previous approaches
employ a wide spectrum of techniques.

At one extreme, extensive feature engineering
was used to define useful features. For example,
Ratinov et al. (2011) use cosine similarities be-
tween Wikipedia titles and local contexts as a fea-
ture when computing the local scores. For pair-
wise scores they exploit information about links
between Wikipedia pages.

At the other extreme, feature engineering is al-
most completely replaced by representation learn-
ing. These approaches rely on pretrained embed-
dings of words (Mikolov et al., 2013; Penning-
ton et al., 2014) and entities (He et al., 2013; Ya-
mada et al., 2017; Ganea and Hofmann, 2017) and
often do not use virtually any other hand-crafted
features. Ganea and Hofmann (2017) showed
that such an approach can yield SOTA accuracy
on a standard benchmark (AIDA-CoNLL dataset).
Their local and pairwise score functions are

Ψ(ei, ci) = eTi Bf(ci)

Φ(ei, ej , D) =
1

n− 1
eTi Rej (3)

where ei, ej ∈ Rd are the embeddings of entity
ei, ej , B,R ∈ Rd×d are diagonal matrices. The
mapping f(ci) applies an attention mechanism to
context words in ci to obtain a feature representa-
tions of context (f(ci) ∈ Rd).

Note that the global component (the pairwise
scores) is agnostic to any relations between enti-
ties or even to their ordering: it models e1, ..., en
simply as a bag of entities. Our work is in line with
Ganea and Hofmann (2017) in the sense that fea-
ture engineering plays no role in computing local
and pair-wise scores. Furthermore, we argue that
pair-wise scores should take into account relations
between mentions which are represented by rela-
tion embeddings.

3 Multi-relational models

3.1 General form

We assume that there are K latent relations. Each
relation k is assigned to a mention pair (mi,mj)
with a non-negative weight (‘confidence’) αijk.
The pairwise score (mi,mj) is computed as a
weighted sum of relation-specific pairwise scores
(see Figure 2, top):

Φ(ei, ej , D) =
K∑

k=1

αijkΦk(ei, ej , D)

Φk(ei, ej , D) can be any pairwise score func-
tion, but here we adopt the one from Equation 3.
Namely, we represent each relation k by a diago-
nal matrix Rk ∈ Rd×d, and

Φk(ei, ej , D) = eTi Rkej



提案手法：multi-relational model
•エンティティ間の関連性

• 𝐾個の潜在的な関係の和で表現
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improvement of 0.85% F1 over the best re-
ported scores on the standard AIDA-CoNLL
dataset (Ganea and Hofmann, 2017). Substan-
tial improvements over the relation-agnostic ver-
sion show that the induced relations are indeed
beneficial for NEL. Surprisingly its training also
converges much faster: training of the full model
requires ten times shorter wall-clock time than
what is needed for estimating the simpler relation-
agnostic version. This may suggest that the in-
jected structural bias helps to explain regularities
in the training data, making the optimization task
easier. We qualitatively examine induced rela-
tions. Though we do not observe direct counter-
parts of linguistic relations, we, for example, see
that some of the induced relations are closely re-
lated to coreference whereas others encode forms
of semantic relatedness between the mentions.

2 Background and Related work

2.1 Named entity linking problem

Formally, given a document D containing a list of
mentions m1, ...,mn, an entity linker assigns to
each mi an KB entity ei or predicts that there is no
corresponding entry in the KB (i.e., ei = NILL).

Because a KB can be very large, it is stan-
dard to use an heuristic to choose potential can-
didates, eliminating options which are highly un-
likely. This preprocessing step is called candidate
selection. The task of a statistical model is thus re-
duced to choosing the best option among a smaller
list of candidates Ci = (ei1, ..., eili). In what fol-
lows, we will discuss two classes of approaches
tackling this problem: local and global modeling.

2.2 Local and global models
Local models rely only on local contexts of men-
tions and completely ignore interdependencies be-
tween the linking decisions in the document (these
interdependencies are usually referred to as coher-
ence). Let ci be a local context of mention mi and
Ψ(ei, ci) be a local score function. A local model
then tackles the problem by searching for

e∗i = argmax
ei∈Ci

Ψ(ei, ci) (1)

for each i ∈ {1, ..., n} (Bunescu and Paşca, 2006;
Lazic et al., 2015; Yamada et al., 2017).

A global model, besides using local context
within Ψ(ei, ci), takes into account entity co-
herency. It is captured by a coherence score func-
tion Φ(E,D):

E∗ = argmax
E∈C1×...×Cn

n∑

i=1

Ψ(ei, ci) + Φ(E,D)

where E = (e1, ..., en). The coherence score
function, in the simplest form, is a sum over
all pairwise scores Φ(ei, ej , D) (Ratinov et al.,
2011; Huang et al., 2015; Chisholm and Hachey,
2015; Ganea et al., 2016; Guo and Barbosa, 2016;
Globerson et al., 2016; Yamada et al., 2016), re-
sulting in:

E∗ = argmax
E∈C1×...×Cn

n∑

i=1

Ψ(ei, ci)+

∑

i ̸=j

Φ(ei, ej , D) (2)

A disadvantage of global models is that exact
decoding (Equation 2) is NP-hard (Wainwright
et al., 2008). Ganea and Hofmann (2017) over-
come this using loopy belief propagation (LBP),
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an approximate inference method based on mes-
sage passing (Murphy et al., 1999). Globerson
et al. (2016) propose a star model which approxi-
mates the decoding problem in Equation 2 by ap-
proximately decomposing it into n decoding prob-
lems, one per each ei.

2.3 Related work

Our work focuses on modeling pairwise score
functions Φ and is related to previous approaches
in the two following aspects.

Relations between mentions
A relation widely used by NEL systems is corefer-
ence: two mentions are coreferent if they refer to
the same entity. Though, as we discussed in Sec-
tion 1, other linguistic relations constrain entity as-
signments, only a few approaches (e.g., Cheng and
Roth (2013); Ren et al. (2017)), exploit any rela-
tions other than coreference. We believe that the
reason for this is that predicting and selecting rel-
evant (often semantic) relations is in itself a chal-
lenging problem.

In Cheng and Roth (2013), relations between
mentions are extracted using a labor-intensive ap-
proach, requiring a set of hand-crafted rules and a
KB containing relations between entities. This ap-
proach is difficult to generalize to languages and
domains which do not have such KBs or the set-
tings where no experts are available to design the
rules. We, in contrast, focus on automating the
process using representation learning.

Most of these methods relied on relations pre-
dicted by external tools, usually a coreference sys-
tem. One notable exception is Durrett and Klein
(2014): they use a joint model of entity linking and
coreference resolution. Nevertheless their corefer-
ence component is still supervised, whereas our
relations are latent even at training time.

Representation learning
How can we define local score functions Ψ and
pairwise score functions Φ? Previous approaches
employ a wide spectrum of techniques.

At one extreme, extensive feature engineering
was used to define useful features. For example,
Ratinov et al. (2011) use cosine similarities be-
tween Wikipedia titles and local contexts as a fea-
ture when computing the local scores. For pair-
wise scores they exploit information about links
between Wikipedia pages.

At the other extreme, feature engineering is al-
most completely replaced by representation learn-
ing. These approaches rely on pretrained embed-
dings of words (Mikolov et al., 2013; Penning-
ton et al., 2014) and entities (He et al., 2013; Ya-
mada et al., 2017; Ganea and Hofmann, 2017) and
often do not use virtually any other hand-crafted
features. Ganea and Hofmann (2017) showed
that such an approach can yield SOTA accuracy
on a standard benchmark (AIDA-CoNLL dataset).
Their local and pairwise score functions are

Ψ(ei, ci) = eTi Bf(ci)

Φ(ei, ej , D) =
1

n− 1
eTi Rej (3)

where ei, ej ∈ Rd are the embeddings of entity
ei, ej , B,R ∈ Rd×d are diagonal matrices. The
mapping f(ci) applies an attention mechanism to
context words in ci to obtain a feature representa-
tions of context (f(ci) ∈ Rd).

Note that the global component (the pairwise
scores) is agnostic to any relations between enti-
ties or even to their ordering: it models e1, ..., en
simply as a bag of entities. Our work is in line with
Ganea and Hofmann (2017) in the sense that fea-
ture engineering plays no role in computing local
and pair-wise scores. Furthermore, we argue that
pair-wise scores should take into account relations
between mentions which are represented by rela-
tion embeddings.

3 Multi-relational models

3.1 General form

We assume that there are K latent relations. Each
relation k is assigned to a mention pair (mi,mj)
with a non-negative weight (‘confidence’) αijk.
The pairwise score (mi,mj) is computed as a
weighted sum of relation-specific pairwise scores
(see Figure 2, top):

Φ(ei, ej , D) =
K∑

k=1

αijkΦk(ei, ej , D)

Φk(ei, ej , D) can be any pairwise score func-
tion, but here we adopt the one from Equation 3.
Namely, we represent each relation k by a diago-
nal matrix Rk ∈ Rd×d, and

Φk(ei, ej , D) = eTi Rkej

確信度 𝑘番⽬の関連性に
基づくスコア



確信度

• 𝑓(𝑚, 𝑐): mention 𝑚	とコンテキスト 𝑐	を
埋め込む関数

• 𝐃1: ベクトル成分の重みを表現する対角行列
• 𝑑: 埋め込むベクトル空間の次元数
• 𝑍#41: 正規化項

1598

The weights αijk are normalized scores:
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where Zijk is a normalization factor, f(mi, ci) is
a function mapping (mi, ci) onto Rd, and Dk ∈
Rd×d is a diagonal matrix.
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Figure 2: Multi-relational models: general form
(top), rel-norm (middle) and ment-norm (bottom).
Each color corresponds to one relation.

In our experiments, we use a single-layer neural
network as f (see Figure 3) where ci is a concate-
nation of the average embedding of words in the
left context with the average embedding of words
in the right context of the mention.1

As αijk is indexed both by mention index j
and relation index k, we have two choices for
Zijk: normalization over relations and normaliza-
tion over mentions. We consider both versions of
the model.

1We also experimented with LSTMs but we could not pre-
vent them from severely overfitting, and the results were poor.

3.2 Rel-norm: Relation-wise normalization
For rel-norm, coefficients αijk are normalized
over relations k, in other words,

Zijk =
K∑

k′=1

exp

{
fT (mi, ci)Dk′f(mj , cj)√

d

}

so that
∑K

k=1 αijk = 1 (see Figure 2, middle). We
can also re-write the pairwise scores as

Φ(ei, ej , D) = eTi Rijej (5)

where Rij =
∑K

k=1 αijkRk.

In foreign policy        Bill Clinton    ordered U.S. military  

tanh, dropout

Figure 3: Function f(mi, ci) is a single-layer neu-
ral network, with tanh activation function and a
layer of dropout on top.

Intuitively, αijk is the probability of assigning a
k-th relation to a mention pair (mi,mj). For ev-
ery pair rel-norm uses these probabilities to choose
one relation from the pool and relies on the corre-
sponding relation embedding Rk to compute the
compatibility score.

For K = 1 rel-norm reduces (up to a scal-
ing factor) to the bag-of-entities model defined in
Equation 3.

In principle, instead of relying on the linear
combination of relation embeddings matrices Rk,
we could directly predict a context-specific rela-
tion embedding Rij = diag{g(mi, ci,mj , cj)}
where g is a neural network. However, in prelim-
inary experiments we observed that this resulted
in overfitting and poor performance. Instead, we
choose to use a small fixed number of relations as
a way to constrain the model and improve gener-
alization.

3.3 Ment-norm: Mention-wise normalization
We can also normalize αijk over j:

Zijk =
n∑

j′=1
j′ ̸=i

exp

{
fT (mi, ci)Dkf(mj′ , cj′)√

d

}



埋め込み関数 𝑓(𝑚, 𝑐)

単層ニューラルネットワーク
• 活性化関数：tanh
• ドロップアウト
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where Zijk is a normalization factor, f(mi, ci) is
a function mapping (mi, ci) onto Rd, and Dk ∈
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Figure 2: Multi-relational models: general form
(top), rel-norm (middle) and ment-norm (bottom).
Each color corresponds to one relation.

In our experiments, we use a single-layer neural
network as f (see Figure 3) where ci is a concate-
nation of the average embedding of words in the
left context with the average embedding of words
in the right context of the mention.1

As αijk is indexed both by mention index j
and relation index k, we have two choices for
Zijk: normalization over relations and normaliza-
tion over mentions. We consider both versions of
the model.

1We also experimented with LSTMs but we could not pre-
vent them from severely overfitting, and the results were poor.

3.2 Rel-norm: Relation-wise normalization
For rel-norm, coefficients αijk are normalized
over relations k, in other words,

Zijk =
K∑

k′=1

exp

{
fT (mi, ci)Dk′f(mj , cj)√

d

}

so that
∑K

k=1 αijk = 1 (see Figure 2, middle). We
can also re-write the pairwise scores as

Φ(ei, ej , D) = eTi Rijej (5)

where Rij =
∑K

k=1 αijkRk.

In foreign policy        Bill Clinton    ordered U.S. military  

tanh, dropout

Figure 3: Function f(mi, ci) is a single-layer neu-
ral network, with tanh activation function and a
layer of dropout on top.

Intuitively, αijk is the probability of assigning a
k-th relation to a mention pair (mi,mj). For ev-
ery pair rel-norm uses these probabilities to choose
one relation from the pool and relies on the corre-
sponding relation embedding Rk to compute the
compatibility score.

For K = 1 rel-norm reduces (up to a scal-
ing factor) to the bag-of-entities model defined in
Equation 3.

In principle, instead of relying on the linear
combination of relation embeddings matrices Rk,
we could directly predict a context-specific rela-
tion embedding Rij = diag{g(mi, ci,mj , cj)}
where g is a neural network. However, in prelim-
inary experiments we observed that this resulted
in overfitting and poor performance. Instead, we
choose to use a small fixed number of relations as
a way to constrain the model and improve gener-
alization.

3.3 Ment-norm: Mention-wise normalization
We can also normalize αijk over j:

Zijk =
n∑

j′=1
j′ ̸=i

exp

{
fT (mi, ci)Dkf(mj′ , cj′)√

d

}

図は論⽂からの引⽤



正規化項
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Figure 2: Multi-relational models: general form
(top), rel-norm (middle) and ment-norm (bottom).
Each color corresponds to one relation.

In our experiments, we use a single-layer neural
network as f (see Figure 3) where ci is a concate-
nation of the average embedding of words in the
left context with the average embedding of words
in the right context of the mention.1

As αijk is indexed both by mention index j
and relation index k, we have two choices for
Zijk: normalization over relations and normaliza-
tion over mentions. We consider both versions of
the model.

1We also experimented with LSTMs but we could not pre-
vent them from severely overfitting, and the results were poor.

3.2 Rel-norm: Relation-wise normalization
For rel-norm, coefficients αijk are normalized
over relations k, in other words,

Zijk =
K∑

k′=1

exp

{
fT (mi, ci)Dk′f(mj , cj)√

d

}

so that
∑K

k=1 αijk = 1 (see Figure 2, middle). We
can also re-write the pairwise scores as

Φ(ei, ej , D) = eTi Rijej (5)

where Rij =
∑K

k=1 αijkRk.

In foreign policy        Bill Clinton    ordered U.S. military  

tanh, dropout

Figure 3: Function f(mi, ci) is a single-layer neu-
ral network, with tanh activation function and a
layer of dropout on top.

Intuitively, αijk is the probability of assigning a
k-th relation to a mention pair (mi,mj). For ev-
ery pair rel-norm uses these probabilities to choose
one relation from the pool and relies on the corre-
sponding relation embedding Rk to compute the
compatibility score.

For K = 1 rel-norm reduces (up to a scal-
ing factor) to the bag-of-entities model defined in
Equation 3.

In principle, instead of relying on the linear
combination of relation embeddings matrices Rk,
we could directly predict a context-specific rela-
tion embedding Rij = diag{g(mi, ci,mj , cj)}
where g is a neural network. However, in prelim-
inary experiments we observed that this resulted
in overfitting and poor performance. Instead, we
choose to use a small fixed number of relations as
a way to constrain the model and improve gener-
alization.

3.3 Ment-norm: Mention-wise normalization
We can also normalize αijk over j:

Zijk =
n∑

j′=1
j′ ̸=i

exp

{
fT (mi, ci)Dkf(mj′ , cj′)√

d

}
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where Zijk is a normalization factor, f(mi, ci) is
a function mapping (mi, ci) onto Rd, and Dk ∈
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Figure 2: Multi-relational models: general form
(top), rel-norm (middle) and ment-norm (bottom).
Each color corresponds to one relation.

In our experiments, we use a single-layer neural
network as f (see Figure 3) where ci is a concate-
nation of the average embedding of words in the
left context with the average embedding of words
in the right context of the mention.1

As αijk is indexed both by mention index j
and relation index k, we have two choices for
Zijk: normalization over relations and normaliza-
tion over mentions. We consider both versions of
the model.

1We also experimented with LSTMs but we could not pre-
vent them from severely overfitting, and the results were poor.

3.2 Rel-norm: Relation-wise normalization
For rel-norm, coefficients αijk are normalized
over relations k, in other words,

Zijk =
K∑

k′=1

exp

{
fT (mi, ci)Dk′f(mj , cj)√

d

}

so that
∑K

k=1 αijk = 1 (see Figure 2, middle). We
can also re-write the pairwise scores as

Φ(ei, ej , D) = eTi Rijej (5)

where Rij =
∑K

k=1 αijkRk.

In foreign policy        Bill Clinton    ordered U.S. military  

tanh, dropout

Figure 3: Function f(mi, ci) is a single-layer neu-
ral network, with tanh activation function and a
layer of dropout on top.

Intuitively, αijk is the probability of assigning a
k-th relation to a mention pair (mi,mj). For ev-
ery pair rel-norm uses these probabilities to choose
one relation from the pool and relies on the corre-
sponding relation embedding Rk to compute the
compatibility score.

For K = 1 rel-norm reduces (up to a scal-
ing factor) to the bag-of-entities model defined in
Equation 3.

In principle, instead of relying on the linear
combination of relation embeddings matrices Rk,
we could directly predict a context-specific rela-
tion embedding Rij = diag{g(mi, ci,mj , cj)}
where g is a neural network. However, in prelim-
inary experiments we observed that this resulted
in overfitting and poor performance. Instead, we
choose to use a small fixed number of relations as
a way to constrain the model and improve gener-
alization.

3.3 Ment-norm: Mention-wise normalization
We can also normalize αijk over j:

Zijk =
n∑

j′=1
j′ ̸=i
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Figure 2: Multi-relational models: general form
(top), rel-norm (middle) and ment-norm (bottom).
Each color corresponds to one relation.

In our experiments, we use a single-layer neural
network as f (see Figure 3) where ci is a concate-
nation of the average embedding of words in the
left context with the average embedding of words
in the right context of the mention.1

As αijk is indexed both by mention index j
and relation index k, we have two choices for
Zijk: normalization over relations and normaliza-
tion over mentions. We consider both versions of
the model.

1We also experimented with LSTMs but we could not pre-
vent them from severely overfitting, and the results were poor.

3.2 Rel-norm: Relation-wise normalization
For rel-norm, coefficients αijk are normalized
over relations k, in other words,

Zijk =
K∑

k′=1

exp

{
fT (mi, ci)Dk′f(mj , cj)√

d

}

so that
∑K

k=1 αijk = 1 (see Figure 2, middle). We
can also re-write the pairwise scores as

Φ(ei, ej , D) = eTi Rijej (5)

where Rij =
∑K

k=1 αijkRk.

In foreign policy        Bill Clinton    ordered U.S. military  

tanh, dropout

Figure 3: Function f(mi, ci) is a single-layer neu-
ral network, with tanh activation function and a
layer of dropout on top.

Intuitively, αijk is the probability of assigning a
k-th relation to a mention pair (mi,mj). For ev-
ery pair rel-norm uses these probabilities to choose
one relation from the pool and relies on the corre-
sponding relation embedding Rk to compute the
compatibility score.

For K = 1 rel-norm reduces (up to a scal-
ing factor) to the bag-of-entities model defined in
Equation 3.

In principle, instead of relying on the linear
combination of relation embeddings matrices Rk,
we could directly predict a context-specific rela-
tion embedding Rij = diag{g(mi, ci,mj , cj)}
where g is a neural network. However, in prelim-
inary experiments we observed that this resulted
in overfitting and poor performance. Instead, we
choose to use a small fixed number of relations as
a way to constrain the model and improve gener-
alization.

3.3 Ment-norm: Mention-wise normalization
We can also normalize αijk over j:
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関係について正規化
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Figure 2: Multi-relational models: general form
(top), rel-norm (middle) and ment-norm (bottom).
Each color corresponds to one relation.

In our experiments, we use a single-layer neural
network as f (see Figure 3) where ci is a concate-
nation of the average embedding of words in the
left context with the average embedding of words
in the right context of the mention.1

As αijk is indexed both by mention index j
and relation index k, we have two choices for
Zijk: normalization over relations and normaliza-
tion over mentions. We consider both versions of
the model.

1We also experimented with LSTMs but we could not pre-
vent them from severely overfitting, and the results were poor.

3.2 Rel-norm: Relation-wise normalization
For rel-norm, coefficients αijk are normalized
over relations k, in other words,

Zijk =
K∑

k′=1

exp

{
fT (mi, ci)Dk′f(mj , cj)√
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}

so that
∑K

k=1 αijk = 1 (see Figure 2, middle). We
can also re-write the pairwise scores as

Φ(ei, ej , D) = eTi Rijej (5)

where Rij =
∑K

k=1 αijkRk.
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Figure 3: Function f(mi, ci) is a single-layer neu-
ral network, with tanh activation function and a
layer of dropout on top.

Intuitively, αijk is the probability of assigning a
k-th relation to a mention pair (mi,mj). For ev-
ery pair rel-norm uses these probabilities to choose
one relation from the pool and relies on the corre-
sponding relation embedding Rk to compute the
compatibility score.

For K = 1 rel-norm reduces (up to a scal-
ing factor) to the bag-of-entities model defined in
Equation 3.

In principle, instead of relying on the linear
combination of relation embeddings matrices Rk,
we could directly predict a context-specific rela-
tion embedding Rij = diag{g(mi, ci,mj , cj)}
where g is a neural network. However, in prelim-
inary experiments we observed that this resulted
in overfitting and poor performance. Instead, we
choose to use a small fixed number of relations as
a way to constrain the model and improve gener-
alization.

3.3 Ment-norm: Mention-wise normalization
We can also normalize αijk over j:
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mention について正規化

mention ペアがどの
関係に関連するかを
表す確率

𝛂 の役割

mention 𝑚# に
対して関係	𝑘 を
通じてmention 𝑚4が
関係しているかを
表す確率

図は論⽂からの引⽤
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実験
• Entity Linkingの精度を評価
•比較手法
• 提案手法 (rel-norm)
• 提案手法 (ment-norm)
• 提案手法 (ment-norm (no pad))
• 提案手法 (ment-norm (K=1))
• 既存手法

•設定
• データセット：AIDA-CoNLL
• 評価指標：F1のマイクロ平均（5回, 95%信頼区間）
• 潜在関連数：6 (rel-norm), 3 (ment-norm)

• 実験的に決定

正規化手法の比較
工夫の効果検証
複数関連の効果検証



実験結果

•提案手法 (ment-norm) が最良
•計算量的には既存手法より高いが
収束が早いので問題にはならない

1601

91% F1 on the dev set, 5 we reduced the learning
rate from 10−4 to 10−5. We then stopped the train-
ing when F1 was not improved after 20 epochs.
We did the same for ment-norm except that the
learning rate was changed at 91.5% F1.

Note that all the hyper-parameters except K and
the turning point for early stopping were set to the
values used by Ganea and Hofmann (2017). Sys-
tematic tuning is expensive though may have fur-
ther increased the result of our models.

4.2 Results

Methods Aida-B
Chisholm and Hachey (2015) 88.7

Guo and Barbosa (2016) 89.0
Globerson et al. (2016) 91.0
Yamada et al. (2016) 91.5

Ganea and Hofmann (2017) 92.22± 0.14
rel-norm 92.41± 0.19

ment-norm 93.07± 0.27
ment-norm (K = 1) 92.89± 0.21
ment-norm (no pad) 92.37± 0.26

Table 1: F1 scores on AIDA-B (test set).

Table 1 shows micro F1 scores on AIDA-B
of the SOTA methods and ours, which all use
Wikipedia and YAGO mention-entity index. To
our knowledge, ours are the only (unsupervis-
edly) inducing and employing more than one re-
lations on this dataset. The others use only one
relation, coreference, which is given by simple
heuristics or supervised third-party resolvers. All
four our models outperform any previous method,
with ment-norm achieving the best results, 0.85%
higher than that of Ganea and Hofmann (2017).

Table 2 shows micro F1 scores on 5 out-domain
test sets. Besides ours, only Cheng and Roth
(2013) employs several mention relations. Ment-
norm achieves the highest F1 scores on MSNBC
and ACE2004. On average, ment-norm’s F1 score
is 0.3% higher than that of Ganea and Hofmann
(2017), but 0.2% lower than Guo and Barbosa
(2016)’s. It is worth noting that Guo and Barbosa
(2016) performs exceptionally well on WIKI, but
substantially worse than ment-norm on all other
datasets. Our other three models, however, have
lower average F1 scores compared to the best pre-
vious model.

The experimental results show that ment-norm
outperforms rel-norm, and that mention padding
plays an important role.

5We chose the highest F1 that rel-norm always achieved
without the learning rate reduction.

4.3 Analysis
Mono-relational v.s. multi-relational
For rel-norm, the mono-relational version (i.e.,
Ganea and Hofmann (2017)) is outperformed
by the multi-relational one on AIDA-CoNLL,
but performs significantly better on all five out-
domain datasets. This implies that multi-relational
rel-norm does not generalize well across domains.

For ment-norm, the mono-relational version
performs worse than the multi-relational one on all
test sets except AQUAINT. We speculate that this
is due to multi-relational ment-norm being less
sensitive to prediction errors. Since it can rely on
multiple factors more easily, a single mistake in
assignment is unlikely to have large influence on
its predictions.

Oracle

G&H rel-norm ment-norm
(K=1)

ment-norm

92

92.5

93

93.5

94

94.5 LBP
oracle

Figure 4: F1 on AIDA-B when using LBP and the
oracle. G&H is Ganea and Hofmann (2017).

In order to examine learned relations in a more
transparant setting, we consider an idealistic sce-
nario where imperfection of LBP, as well as mis-
takes in predicting other entities, are taken out of
the equation using an oracle. This oracle, when
we make a prediction for mention mi, will tell
us the correct entity e∗j for every other mentions
mj , j ̸= i. We also used AIDA-A (development
set) for selecting the numbers of relations for rel-
norm and ment-norm. They are set to 6 and 3,
respectively. Figure 4 shows the micro F1 scores.

Surprisingly, the performance of oracle rel-
norm is close to that of oracle ment-norm, al-
though without using the oracle the difference
was substantial. This suggests that rel-norm is
more sensitive to prediction errors than ment-
norm. Ganea and Hofmann (2017), even with the
help of the oracle, can only perform slightly bet-
ter than LBP (i.e. non-oracle) ment-norm. This

ment-norm が
rel-norm より良い

複数の潜在関連を
取り入れることが良い

図は論⽂からの引⽤



まとめ
•問題：Entity Linking
•従来：ヒューリスティクス，教師あり学習
•課題：教師なしでEntity Linkingの実現
•手法：

•実験：AIDA-CoNLLデータセットで
最新研究と比較

•結果：

1. 関係を隠れ変数として導入
2. 複数の関係を考慮することで
多様な関係を表現

1. 最新研究よりも精度向上
2. 複数の関係の導入が精度に貢献


